Section outline
-
To improve teaching skills in the field of textile printing, it should be taken into account that textile printing is a technology and industry that intersects several areas, and is basically experiential and multidisciplinary.
To understand and to be able to teach in digital textile printing, one must understand the nature of interaction of following fields: print head design and manufacture, material handling engineering, ink chemistry, textile manufacture and pre-treatment, post-print finishing, design, raster image processing (RIP), and color management with objectification.
It is necessary to distinguish between the methodology of teaching and research in the field of digital printing and the functionalization of textile materials for the needs of digital printing.
- For TEACHERS: materials prepared for the needs of this course are available, with the recommendation of additional literature and guidelines for the organization of the course.
- For RESEARCHERS: In the field of research, numerous areas of application of digital printing on textile materials have been opened, and the directions of research can be defined in the following contexts:
- Previous research has confirmed that it is precisely the fundamental mechanisms that define print quality that have not been fully clarified, and the role of the surface structure of textile material has only recently been recognized as one of the fundamental factors for print quality and the achievement of an optimal color gamut. Therefore, any study of the influence of surface structural characteristics of textile materials on the formed shape, degree of deformation and spreading of the droplets on the surface of textile materials and penetration of printing ink droplets into the structure of textiles, contributes to the understanding of these fundamental mechanisms.
- A specific problem is the porosity of the textile material, which causes a certain loss of information in the reproduction, since the penetration of printing ink into the deeper layers of the textile substrate as well as the loss of printing ink on porous parts cannot be prevented.
- Also, the issue of providing an active surface and the specific relationship of chemical constitutions of dyes and functional groups of textiles also defines the platform of the still unresolved issues in digital printing technology.
- Problems of modification and adaptation of inks and components of printing pastes for application in ink jet technology, as well as problems of technical requirements of devices for InkJet printing, additionally complicate the optimization of printing pastes or printing inks. Also, a significant problem is the optimization of pre-processing and post-processing methods of textiles as key stages in the application of digital technology. Particularly high demands on particle size, surface tension, viscosity, stability, compatibility with printing ink components and ink flow technology are placed on binders as key factors in the application of pigment-based printing inks.
- Therefore, we can now consider which are the most important directions of research and aspects of the application of an innovative approaches in the formulation of printing inks and modifications and pre-treatments of textile materials. We must also take into account that in digital ink jet technology, the development of printing ink formulation takes place in two main streams - one refers to the development of pigment based inks, which includes the development of innovative methods of textile surface pre-treatment and the development of binders. The second refers to the development of dye-based printing inks, which includes research in the field of dye modification, primarily reactive dyes, given the percentage of cellulosic materials being printed on a global market.
- As ink jet is a non-contact technology, the image formation is dependent on the physical-chemical phenomenon of ink spreading and penetration. This is dependent on ink properties (surface tension-viscosity), substrate pretreatment (physical-chemical aspects of dye-fiber interaction) and substrate structure - physical, constructional and chemical. What is indicative and present certain research gap in the field of digital textile printing is that there were no extensive research on ink penetration mechanism, although the significant part of printing ink-textile interaction is defined by the characteristic of absorbency, hydrophilicity and the porosity of textile.
- As much as the modelling of ink penetration and ink spreading, and their effect on print performance of paper have been well studied, these findings are still not verified for textiles where more complex behavior of ink jet inks is anticipated due to the topological nature of woven/knitted textile fabrics, the diversity of colorants (dyes and pigments) and their adsorption behavior on different textile fibers.