Control Charts for Variables


X̄ and R chart

When the result of the control is variable data, which is generated frequently and a sample less than 10 item is enough to represent the production the \( \bar{X}\ and\ R \) chart chart is recommended [4, 5, 7, 9, 16-20, 36].

Typically the \( \bar{X} \) chart is drawn above the \( R \) chart. The values of \( \bar{X} \) and \( R \) are represented on the \( y \) axis and the sequence of the subgroups through time is represented on the \( x \) axis.

Calculation of the average and range of each subgroup is done by the following formulas:


\( \bar{X}=\frac{X_1+X_2+...+X_n}{n} \) (9.1)


\( R=X_{max}+X_{min} \) (9.2)

where

\( X_1 \), \( X_2 \), \( ... \) - the individual values within the subgroup
\( n \) - subgroup sample size

Calculation of the average range and the process average is done by the following formulas:


\( \bar{\bar{X}}=\frac{{\bar{X}}_1+{\bar{X}}_2+...+{\bar{X}}_k}{k} \) (9.3)


\( \bar{R}=\frac{R_1+R_2+...+R_k}{k} \) (9.4)


where


\( k \) - number of subgroups

\( X_1 \), \( X_2 \), \( ... \) - are the averages of each subgroup

\( R_1 \), \( R_2 \), \( ... \) - are the ranges of each subgroup


Calculation of the control limits is done by the following formulas:


For the \( \bar{X} \) chart:


\( {UCL}_{\bar{X}}=\bar{\bar{X}}+A_2\bar{R} \) (9.5)


\( {LCL}_{\bar{X}}=\bar{\bar{X}}-A_2\bar{R} \) (9.6)


For the  \( R \) chart:


\( {UCL}_R=D_4\bar{R} \) (9.7)


\( {LCL}_R=D_3\bar{R} \) (9.8)


where \( A_2 \) , \( D_3 \) and \( D_4 \) are constants varying according to the sample size. Their values are presented on FIg. 9.3:

constants table
Fig. 9.3 Constants for calculation of the control limits

Example

Create a\( \bar{X}\ and\ R \) control chart for the linear density of cotton sliver. The sampling plan is used to select four units every one hour. The operator measures the linear density and record the value it in Nm (See Table 9.1). For facilitation, the values have been multiplied by 1000 i.e., when the measured value has been 0.251, the recorded value is 251.


Table 9.1 Units linear density

Sample
Number

Unit 1
Linear Density

Unit 2
Linear Density

Unit 3
Linear Density

Unit 4
Linear Density

1

272

252

245

255

2

274

254

272

247

3

264

251

257

255

4

263

248

244

269

5

269

251

273

244

6

263

273

274

272

7

258

266

266

247

8

252

276

273

272

9

258

267

275

250

10

261

254

256

261

11

252

250

254

246

12

270

247

249

254



First, we calculate the average and range of each subgroup. Te results are presented in Table 9.2:


Table 9.2 Average and range of each subgroup

x1

256.00

R1

27

x2

261.75

R2

27

x3

256.75

R3

13

x4

256.00

R4

25

x5

259.25

R5

29

x6

270.50

R6

11

x7

259.25

R7

19

x8

268.25

R8

24

x9

262.50

R9

25

x10

258.00

R10

7

x11

250.50

R11

8

x12

255.00

R12

23


The next step is the calculation of the average range and the process average using formulas (9.3) and (9.4):


\( \bar{\bar{X}}=\frac{256+261.75+...+255}{12}=259.48 \)


\( R=\frac{27+27+...+23}{12}=19.83 \)


Finally, we plug the values in the formulas (9.5), (9.6), (9.7) and (9.8) for the control limits:


\( {UCL}_{\bar{X}}=259.48+0.729*19.83=273.94 \)


\( {LCL}_{\bar{X}}=259.48-0.729*19.83=245.02 \)


\( {UCL}_R=2.282*19.83=45.26 \)


\( {LCL}_R=0*19.83=0 \)


According to the calculations, we can construct the \( \bar{X}\ and\ R \) control chart (Fig. 9.4):


xr chart

Fig. 9.4 \( \bar{X}\ and\ R \) control chart


X̄ and s chart

\( \bar{X}\ and\ s \) is used when the result of the control is variable data, and a sample size group is more than 10. \( \bar{X}\ and\ s \) is very similar to an \( \bar{X}\ and\ R \), but the subgroup variation is estimated by the standard deviation, instead of the range [4, 5, 7, 9, 16-20, 36].

Calculation of the average and standard deviation of each subgroup is done by the following formulas:


\( \bar{X}=\frac{X_1+X_2+...+X_n}{n} \) (9.9)


\( s=\sqrt{\frac{X_1^2+X_2^2+...-n{\bar{X}}_n^2}{n-1}} \) (9.10)


\( X_1 \), \( X_2 \), \( ... \) - are the individual values within the subgroup

\( \bar{X} \) - the sample mean

\( n \) - the subgroup size


Calculation of the average standard deviation and the process average is done by the following formulas:


\( \bar{\bar{X}}=\frac{{\bar{X}}_1+{\bar{X}}_2+...+{\bar{X}}_k}{k} \) (9.11)


\( s=\frac{s_1+s_2+...+s_k}{k} \) (9.12)


where

\( k \)

\( \bar{X}_1 \), \( \bar{X}_2 \), \( ... \) - are the averages of each subgroup

\( s_1 \), \( s_2 \), \( ... \) - are the standard deviations of each subgroup

Calculation of the control limits is done by the following formula:


\( {UCL}_{\bar{X}}=\bar{\bar{X}}+A_3\bar{s} \) (9.13)


\( {LCL}_{\bar{X}}=\bar{\bar{X}}-A_3\bar{s} \) (9.14)


\( {UCL}_S=B_4\bar{s} \) (9.15)


\( {LCL}_S=B_3\bar{s} \) (9.16)


Example

If instead of taking samples consisting of four units as in the x/r example, the organization decided to take samples consisting of 12 units. A s chart should be used instead of R.

Again, the first step is the calculation of the average and standard deviation of each subgroup (Table 9.3):


Table 9.3 Average and standard deviation of each subgroup

x1

256.17

s1

7.44

x2

259.42

s2

7.03

x3

261.75

s3

9.26

x4

262.08

s4

11.19

x5

264.25

s5

9.32

x6

258.50

s6

9.26

x7

259.75

s7

8.32

x8

261.25

s8

10.04

x9

258.00

s9

10.41

x10

259.42

s10

11.45

x11

258.75

s11

10.60

x12

255.25

s12

8.90


The next step is the calculation of the average standard deviation and the process average using formulas (9.11) and (9.12):


\( \bar{\bar{X}}=\frac{256.17+259.42+...+255.25}{12}=259.55 \)


\( s=\frac{7.44+7.03+...+8.90}{12}=9.44 \)


Finally, we plug the values in the formulas (9.13), (9.14), (9.15) and (9.16) for the control limits:


\( {UCL}_{\bar{X}}=259.55+0.8859*9.44=267.91 \)


\( {LCL}_{\bar{X}}=259.55+0.8859*9.44=251.19 \)


\( {UCL}_s=1.6465*9.44=15.54 \)


\( {LCL}_s=0.3535*9.44=3.34 \)


According to the calculations, we can construct the \( \bar{X}\ and\ s \) control chart:


xs chart
Fig. 9.5 \( \bar{X}\ and\ s \) control chart


I-MR chart

In some cases, the measurements are too expensive (e.g., a destructive test) or the output is relatively homogenous the chartfor individuals and moving range (\( I-MR \) chart) is recommended [4, 5, 7, 9, 16-20, 36].


Formulas for the construction of the charts are:


\( \bar{X}=\frac{X_1+X_2+...+X_k}{k} \) (9.17)


\( \bar{MR}=\frac{\sum\left|X_i-X_{i-1}\right|}{k-1} \) (9.18)


where

\( X_1 \), \( X_2 \), \( ... \) - are the individual values

\( k \) - number of observations

\( \bar{X} \) - the center line for the \( I \) chart

\( \bar{MR} \) -the center line for the \( MR \) chart

Calculation of the control limits is done by the following formulas


\( {UCL}_X=\bar{X}+E_2\bar{MR} \) (9.19)


\( {LCL}_X=\bar{X}-E_2\bar{MR} \) (9.20)


\( {UCL}_{MR}=D_4\bar{MR} \) (9.21)


\( {LCL}_{MR}=D_3\bar{MR} \) (9.22)


Example

A quality engineer monitors the manufacture of cotton sliver and wants to assess whether the process is in control. The engineer measures the linear density of 25 consecutive batches.

The data from the measurement is in Table 9.4:


Table 9.4 Values of the linear density

n

1

2

3

4

5

6

7

8

9

10

11

12

13

Value

271

255

248

248

272

247

268

260

273

248

251

267

254

n

14

15

16

17

18

19

20

21

22

23

24

25

 

Value

260

261

258

251

256

252

249

266

268

266

266

261

 



The first step is the calculation of the values for the \( MR \) chart using formula (9.18). The results are in Table. 9.5:

Table 9.5 Values for the \( MR \) chart

No

\( I \) Chart

\( MR \) Chart

1

271

 

2

255

16

3

248

7

4

248

0

5

272

24

6

247

25

7

268

21

8

260

8

9

273

13

10

248

25

11

251

3

12

267

16

13

254

13

14

260

6

15

261

1

16

258

3

17

251

7

18

256

5

19

252

4

20

249

3

21

266

17

22

268

2

23

266

2

24

266

0

25

261

5


The center lines are:


\( \bar{X}=259.04 \)


\( \bar{MR}=9.42 \)


The control limits are calculated by plugging the values in formulas (9.19), (9.20), (9.21) and (9.22):


\( {UCL}_X=259.04+2.66*30.79=284.09 \)


\( {LCL}_X=259.04+2.66*30.79=233.99 \)


\( {UCL}_{MR}=3.27*9.42=30.79 \)


\( {LCL}_{MR}=0*9.42=0 \)


Now we are able to construct the chart (Fig. 9.6):


imr chart
Fig. 9.6 \( I-MR \) chart