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Abstract Apparel production is characterised by labour-
intensive manual operations, frequent style changes, seasonal
demand and shortening production lead times. With fierce
competition worldwide, many manufacturers are switching
their production from mass mode to lean mode to shorten
their response time to changes. In a complex mixed mode
production environment, it is very important to allocate job
orders to suitable production lines so as to ensure the effec-
tive utilization of production resources and on-time comple-
tion of all job orders. In this paper, planning algorithms are
proposed for automatic job allocations based on group tech-
nology and genetic algorithms. For genetic algorithms based
intelligent planning algorithms, single-run and multiple-run
genetic algorithms are suggested. Real production data are
used to validate the proposed method. The proposed algo-
rithms has been shown being able to substantially improve
planning quality. These planning algorithms are currently
used by apparel manufacturers in Hong Kong as part of their
routine planning operations.

Keywords Apparel production · Production planning ·
Group technology · Genetic algorithms · Intelligent ERP

Introduction

The apparel industry is characterised as a fast-changing mar-
ket. Since most apparel products are seasonal in nature,
time-to-market is now an essential factor in order for manu-
facturing firms to compete in an intense market. Giving that
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consumers’ tastes are always changing, the fashion market
could probably be considered as one of the most turbulent
and fickle markets. It therefore requires a quick response to
fashion changes whose rhythms are becoming more and more
accelerated in order to satisfy customers’ propensity for any-
thing modern and unusual. Therefore, for many years, time-
based competition has been a coherent strategic orientation
for this industry (De Toni and Meneghetti 2000). In addition,
the widespread adoption in the retail sector of ‘lean retailing’
implies that the supply of fashion garments is continuously
being adjusted to consumer tastes. This requires the more
frequent re-ordering of garment items in smaller quantities
as opposed to the traditional stocking of the store before
the season begins and clearance sales at the end (Mayer
2004).

To cope with the short lead-time and small but fre-
quent orders, apparel manufacturers strive to improve their
production processes in order to deliver finished products
within the expected time frame at the lowest production
cost. Production planning is therefore gaining importance in
contemporary apparel manufacturing. Traditional production
planning research focuses on either long-term, or short-term,
or even daily planning. Limited works have been observed
that can link these individual tasks together. Early studies
attempted to link different levels of planning using a mono-
lithic approach (Graves 1982) in which both long-term and
short-term planning problems are combined to yield a very
large problem. In practice, the extreme size of these mod-
els prevents their computational implementation. In contrast,
hierarchical models take a modular approach for linking up
long-term and short-term planning together. With the intro-
duction of hierarchical production planning (HPP), theoret-
ical work on the topic has emerged (Axsater and Jönsson
1984; Bitran et al. 1981; Bitran and Hax 1981; Erschler et al.
1986; Hax and Candea 1984; Özdamar 1996). The benefits
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of HPP are well-established. The most significant advantage
is the reduction of the computational burden and the ease of
addressing decision-making at different levels of manage-
ment. A variety of HPP applications in different industries
have been gradually reported since the 1980s. Most notably,
Vicens et al. (2001), Karumanasseri and Abourizk (2002),
McKay and Wiers (2003) have studied the use of decision
support systems for scheduling and Yan et al. (2002) have
applied mixed algorithmic techniques. Additional methods
described in the literature that have been used to develop pro-
duction plans include non-linear integer programming tech-
niques (Rajagopalan 2002), heuristics techniques (Chang
et al. 2003; Dejonckherre et al. 2003) and goal programming
techniques (Leung et al. 2003). In addition, Rao et al. (2004)
utilized a two-stage integer stochastic program in which they
determined what products to produce and how much of these
products to produce.

However, the extended literature on production planning
deal with systems with mainly machine operations, where the
production rates of machine operations are, in general, con-
stants (Metaxiotis et al. 2002). If a system involves mainly
manual operations, the production rates are sometime unpre-
dictable, which make the results for machine work inap-
plicable. On the other hand, a real production environment
inevitably involves uncertainty issues such as the arrival of
rush orders, order cancellations, changes in order due dates,
operator efficiency variations, learning curve effects, delays
due to a sudden breakdown of critical machines, and absen-
teeism of operators, etc. The apparel manufacturing environ-
ment is typically fuzzy.

To handle complex planning processes, large apparel man-
ufacturers use Enterprise Resource Planning (ERP) computer
systems. ERP is modular-based application software that
is designed for enterprises to coordinate all the resources,
information and activities needed to complete the business
process (Hodge 2002). Some apparel companies further
integrate their ERP systems with e-business solutions—
from consumer-oriented online store fronts to extranets—to
strengthen communications and streamline transactions with
customers and suppliers in an attempt to derive efficiency
gains (Tuunainen and Rossi 2002; Everdingen et al. 2000).
For small and medium sized companies, different from large
enterprises, they could not afford expensive ERP solutions
but remain most operations, including the planning opera-
tion, to complete manually. In apparel industry, with the trend
of increasingly seasonal demand, the number of jobs orders
multiplies but the size of the orders becomes smaller. Apparel
manufacturers are switching to lean model production, in
which large sewing departments are splitting into smaller,
self-balancing, sewing lines. In result, in a single produc-
tion planning exercise, hundreds and thousands of jobs must
be allocated to a mix of sewing lines of different capacities.
There are a number of reported studies on intelligent control

of garment manufacturing, for example applications in the
cutting room operations (Wong et al. 2006).

The main purpose of this paper is to develop intelli-
gent apparel production planning algorithms that allocate job
orders to suitable sewing units to ensure the effective utili-
zation of production capacity and on-time completion of all
job orders. The intelligent planning algorithms are based on
group technology and genetic algorithms and can be used
for labour-intensive operation planning. The proposed algo-
rithms are developed as an Excel spreadsheet that can be used
by different sizes of company and can even be integrated with
advanced ERP solutions. The rest of the paper is organised
as follows. Section “Apparel production planning” outlines
the production planning practices of the apparel industry.
Next, the apparel planning algorithms based on group tech-
nology is described in section “Planning algorithms based on
group technology”. section “Intelligent planning with genetic
algorithms” describes the intelligent planning algorithms by
genetic algorithms. Section “Case studies and discussion”
incorporates case studies and a discussion.

Apparel production planning

Apparel production process

Apparel production is characterised by labour-intensive man-
ual operations, frequent style changes, seasonal demand, and
short production lead times. It consists of a series of opera-
tions such as designing, sample confirmation, sourcing and
merchandising, lay planning, marker planning, spreading and
cutting, sewing, washing and finishing and packaging (see
Fig. 1). Apparel production is a sequential process where
good planning is vitally important. The sewing operation is
regarded as the key operation in the whole apparel manufac-
turing process, the schedule of which is used to define the
schedules of other operations. The sewing operation itself
consists of many steps depending on the product, but it is
viewed as a single operation in this paper because, unlike
machine operations, sewing is mainly manual work and dif-
ferent sewing steps are completed within a single sewing unit
(sewing line) in a self-balancing manner. In apparel produc-
tion planning, once the sewing operation schedule is fixed,
other operations such as sourcing, spreading and cutting,
washing and finishing can be scheduled accordingly by man-
ual planning or by the use of ERP or Material Requirement
Planning (MRP) systems.

Apparel ERP implementations

As discussed previously, large apparel enterprises adopt ERP
systems in an attempt to improve competitiveness and over-
all system efficiency. Traditional ERP systems complete the
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Fig. 2 Data flow between ERP system and the Excel planning spread-
sheet

planning exercise by allowing planners to input the produc-
tion schedules of different job orders. Upon planner deciding
the schedule of jobs (the corresponding schedule of sew-
ing operations), the ERP systems can decide the correct
resource consumption and the schedule of other operations.
The approach of manual planning for sewing schedule in
ERP fits the needs of the majority of companies because
companies have different strategies and operate under varied
constraints.

The trend of switching to lean mode production makes
the planning operation even more difficult than before in
view of the total number of jobs and the growing complex-
ity of the production facilities. It is extremely difficult, if
not impossible, for planners to coordinate and integrate all
sorts of information to optimise the planning and to maxi-
mise resource utilization. The quality of the planning depends
very much on individual planner’s experience and knowledge
of the shop floor. This paper proposes the use of intelligent
planning algorithms using the concept of group technology
and genetic algorithms to achieve automatic planning. Such
algorithms are programmed in Excel VBA codes and saved
as Excel add-ins (.xla or .xll). These Add-Ins can be installed
in the Excel spreadsheets, allowing easy implementation for
organizations of different sizes. With the spreadsheet plat-
form, individual companies can easily define their own pro-
duction settings, planning strategies and constraints, and then
use the proposed algorithms (add-ins) to accomplish complex
planning in a few clicks. For large organizations, the spread-
sheet approach allows easy integration with ERP systems. As
shown in Fig. 2, job order data are firstly exported from the

ERP system to an Excel spreadsheet. Automatic planning is
carried out in the spreadsheet using intelligent planning algo-
rithms add-ins. Planners can review the resulting production
plan and the capacity balance and can even adjust the plans
manually if necessary. The resulting production plan with
detailed schedules of all jobs is then imported into the ERP
system for the real-time coordination of the production shop
floor and other departments.

Planning algorithms based on group technology

Production planning aims at maximising efficiency and
minimising inventory. Because apparel production mainly
involves manual operations, operators’ efficiencies are not
constants but variables. Operators gradually improve their
efficiency when they get used to the operation procedure. As
a result, workers with similar previous experience can usu-
ally produce more efficiently and the output quality can be
ensured. Consequently, some manufacturers tend to allocate
jobs to sewing lines where operators are most familiar with
the jobs, which in turn maximises production efficiency. This
strategy is using group technology for production planning.

Group technology (GT) is a methodology of combining
the design of different products to reduce the number of parts
or combining products involving similar manufacturing pro-
cesses to reduce inventories and work in progress (WIP).
Since workers are producing similar products all the time,
the throughput time and setup time can be largely reduced.
With the concept of GT, sewing lines are delegated to produce
a specific type of product or to serve one customer. The prin-
ciple behind this is that the manufacturing processes (sewing
operations) of different styles for the same customer are sim-
ilar, and the manufacturing processes of different customers
for similar styles may also be similar. Skilled workers can
work in more efficient ways due to the learning curve effect.
If job orders of similar products are allocated to the same
sewing unit, the efficiency can therefore be increased. Plan-
ning algorithms based on the concept of GT are developed
in order to maximise the operators’ familiarity with the job
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Fig. 3 Excel spreadsheet screen capture for job group classification

and consequently aim to improve the production efficiency
and output quality.

Initial settings for production planning

It is necessary to define the production system before the
planning exercise, for example the number of sewing lines
and the relevant capacity constraints. Apparel companies
may assign their workers to work in shifts so as to increase
the production capacity of the sewing lines. Shift information
should also be defined. In this paper, it is assumed that each
production line has two shifts: a day shift and a night shift.

The GT planning algorithm first classifies job orders into
different groups based on some defined criteria such as cus-
tomer information, product type and style characteristics (see
Fig. 3). Jobs can be further classified as priority jobs or nor-
mal jobs based on the planning strategies of the individual
company. Important jobs for which on-time completion is
essential are regarded as priority jobs. These are usually jobs
from new customers or jobs with an expensive late penalty.

Once the job groups and sewing lines are properly defined,
the production planner should define job allocation prefer-
ence settings by assigning up to ten sewing lines for each job
group, in descending order of preferences, as shown in Fig. 4.
The job allocation preference setting is defined in terms
of job information such as customer information, product
type and style characteristics and planners’ knowledge of the

sewing lines. Preferred sewing lines should be able to pro-
duce jobs in a shorter time and to a better quality. Such job
allocation preferences can be tailored to the situation of indi-
vidual companies, and can be modified easily to describe
different production situations.

Automatic planning algorithms

Algorithms are developed to allocate jobs automatically to
different sewing lines according to the defined job allocation
preferences. Priority jobs will be scheduled first, followed by
normal jobs. A new job is allocated to the most preferred (first
priority) sewing line. In the event that the capacity of the line
is not sufficient for the job, work is then allocated to the sec-
ond preferred (second priority) sewing line, and so on. This
process is repeated until all job orders are allocated to the
available lines. For each sewing line, the allocated jobs are
sequenced according to the job due dates. If multiple shifts
(day shift or night shift) are used in that sewing line, a second
assignment is needed to allocate job orders to specific pro-
duction shifts. In other words, job orders are allocated in two
assignment exercises: to sewing lines in the first assignment
and to production shifts in the second assignment.

In usual practice, workers on the day shift are different
from workers on the night shift, even though they work in the
same sewing line. For the purpose of better quality control,
each job order should be processed by one production shift
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Fig. 4 Excel spreadsheet screen capture for job allocation preference settings
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Fig. 5 Load balancing of production shifts

only. Job orders are allocated to the first available production
shift based on the earliest start date. A line balancing scheme
is then proposed to fine tune the job schedules for each sew-
ing line so as to ensure a proper balance of shift loading and
on-time completion of all job orders (or the smallest possible
delay in case of over capacity). Take Fig. 5 as an example.
Four job orders have been allocated to a sewing line: a one-
day job, a two-day job, a three-day job and a seven-day job,
with same latest finished dates (the red line in the figure).
By allocating jobs to the most available production shifts,

the one-day job and the three-day job are allocated to the
day shift, while the two-day job and the seven-day job are
allocated to the night shift. Before capacity balancing, it can
be seen that the seven-day job cannot be completed on time.
A line-balancing scheme is used to reallocate jobs to differ-
ent shifts such that all job orders can be finished on time. In
this case, the two-day job is reallocated to the day shift (see
Fig. 5).

The traditional latest start date (LSD) method is used to
schedule the detailed job orders in the planning algorithms.
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This is because planning is a rolling exercise in which new
jobs are continually inputted. Consequently, the production
plan must be reviewed (or re-planned) regularly. In order to
allow the insertion of rush orders and to minimise the inven-
tory level, a lean production approach is assumed with job
orders scheduled by the latest start date, that is the latest pos-
sible time to start a job without causing a delay. As shown
in Fig. 6, if jobs are scheduled to the earliest available sew-
ing units (earliest start date method), they will be completed
before the proposed due date, which incurs inventory costs for
handling the finished goods. By the latest start time method,
jobs are processed only when needed, while on-time com-
pletion can be guaranteed. In addition, this method indicates
where rush orders can be inserted, at the same time reducing
unnecessary inventory costs.

Figure 7 shows the process flow of planning job orders
based on group technology algorithms. It is important to
know that GT planning algorithms are tailor-made algorithms
that automate the planning exercise based on predefined job
allocation preferences. Job allocation settings are designed
for a specific condition. If the condition changes, it is nec-
essary to update the preference setting accordingly. In this
case, optimal planning cannot be ensured using customised
job allocation preferences. Genetic algorithms are therefore
proposed to optimise the apparel planning in this paper.

Intelligent planning with genetic algorithms

Genetic algorithms (GAs) are powerful search algorithms
that have been successfully applied to different engineering
optimisation problems. GAs mimic Darwin’s evolutionary
process to “evolve” the best solution to a complex problem
using the concept of the survival of the fittest in natural selec-
tion.

Individual representation

To apply GAs in solving an industrial optimisation prob-
lem, it is usually assumed that a potential solution to the

Fig. 7 Production planning of job orders based on group technology

problem may be represented as a set of variables. These vari-
ables (‘genes’) are joined together to form a string of val-
ues (‘chromosome’). The choice of representation depends
on the nature of the problem. In this paper, integer chromo-
some representation is used to indicate the job allocation.
The length of the chromosome string represents the number
of jobs, while the digit values represent the assigned produc-
tion sewing lines. In the following example, job order 1 is
assigned to sewing line 5, job order 2 is assigned to sewing
line 8, and so forth.

Chromosome: 5 8 6 4 7 3 9 5
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Fitness evaluation

In GA, each chromosome represents a production plan and
the effectiveness of this production plan is evaluated. This
gives a fitness value to the chromosome. The overall plan-
ning objective is to maximize the on-time completion of jobs
and operator efficiency. To optimise the production planning
by GA, the fitness function is defined as:

�( j) = A
∑n

j=1 CT ( j) + CG( j)
(1)

where CT ( j) is the time cost of the job order j, CG( j) is the
group-assignment cost of the job order j , and A is a large
constant value.

The time cost compares the scheduled completion time
and the required shipping date, and is calculated by

CT ( j) = μ · max(Tp( j) − TD( j), 0) + λ · L (2)

where Tp is the expected completion time of job order j, TD

is the shipping due date of the job, and the value of L follows

L =
{

1 if max(Tp( j) − TD( j), 0) > 0
0 otherwise.

(3)

μ and λ are weights given to on-time completion and delay
penalties, and these weights are decided by management
according to their planning strategy. In this paper, the weights
are μ = 0.1 and λ = 3. In Eq. (2), the first part represents
the time cost and the second part represents the late penalty.
If the job order can be completed on time, the cost is zero.
λL in the second part is the penalty given for the delayed
completion of the job.

The group assignment cost CG is defined as:

CG( j) = σ · Q j · (P( j) − 1)m (4)

where σ is a weighting parameter for a group assignment,
Q j is the quantity of job order j , and P( j) is the priority
of the assigned sewing line for job order j . If job order j is
allocated to the first priority sewing line, P( j) equals 1. If it
is allocated to the second priority sewing line, P( j) equals
2, and so on. Since the planner has chosen up to 10 prior-
ity lines for each job group, P( j) equals 11 if the job order
cannot be allocated to any of the preferred lines. Index m
is a multiplier, which can be defined as different values for
different job types. For instance, in this paper, m = 10 if the
job j is a priority job and m = 6 if it is a normal job. The
weight of the group assignment is set as σ = 10−10 in this
paper.

Apart from the on-time completion of a job, another objec-
tive of apparel production planning is efficiency maximiza-
tion. Owing to the nature of manual operation in apparel
manufacturing, it is assumed that the operational efficiency
is improved if the workers already have similar experience. If
jobs are assigned to preferred lines, the operation efficiency

will be higher. Therefore, the efficiency maximisation objec-
tive can be achieved by minimising the group assignment
costs in Eq. (1).

Genetic operators

There are three main operators in genetic algorithms: selec-
tion, crossover and mutation.

Selection

The major objective of selection is to maintain or increase the
fitness of the population. Chromosomes are selected from the
population to produce the offspring for the next generation,
based on their fitness value. The chromosome with a higher
fitness value has a higher probability of being retained in the
next generation. Selection can be viewed as the way to main-
tain or increase the fitness of the population. Since selection
is based on the fitness values of chromosomes, the character-
istics (genes) of the chromosome with a good performance
can be retained in the next generation.

There are different kinds of selection methods in genetic
algorithms. The best known method is the so-called roulette
wheel selection method. In roulette wheel selection, the chro-
mosome which has a higher fitness has a higher probability of
being selected to produce the offspring in the next generation.
The selection probability of the chromosome is accordingly

pi = �(i)
∑n

j=1 �( j)
(5)

where �(i) is the fitness value of the i-th chromosome.

Crossover

The crossover operator is the most important search oper-
ator in genetic algorithms. Crossover is used for the main
search mechanism, while mutation is used to ensure that all
possible combinations of chromosomes can arise in the pop-
ulation. The purpose of crossover is to combine the useful
segments of the parent chromosomes such that the offspring
can obtain the good characteristics of both parent chromo-
somes. Figure 8 shows a single-point crossover that occurs
after the third gene of two ten-digit parental chromosomes.

Mutation

Mutation is regarded as a “background operator” in genetic
algorithms. Mutation is used to provide new information for
the population and also to prevent the population from pre-
mature convergence. If both the parent chromosomes have
the same value at certain genes, crossover cannot change the
value of that gene. Therefore, mutation is used to ensure that
all of the points in the search space can be reached. Figure 9
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Fig. 8 Single-point crossover
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Fig. 9 Random resetting mutation

shows an illustration where the third gene is mutated in such
a way that a new gene value of 1 replaces the original gene
value of 3.

Two approaches of GA

In this paper, two GA approaches have been used to opti-
mise the job allocation problem. The first approach is that
both priority and normal jobs are allocated in one single run.
The second approach is that priority jobs are allocated first
by one run of GAs, and the normal jobs are then allocated in
another run of GAs, with all the scheduled priority jobs as sys-
tem initial conditions. In the proposed two-run approach of
GAs, normal jobs are allocated after priority jobs in order to
search out sewing lines with sufficient capacity for these jobs.
Figure 10 illustrates the flow of the proposed two-run GAs.
The allocation method of job orders from sewing lines to pro-
duction shifts is the same as that described in section “Auto-
matic planning algorithms”. The two-run approach of GAs is
proposed because different criteria exist in terms of job allo-
cation, in that some jobs (priority jobs) are more concerned
with whether suitable sewing lines are assigned with regard
to quality or contract issues, while other jobs (normal jobs)
focus more on on-time completion and efficiency issues.

Case studies and discussion

Three different sets of real production data were used to test
the performance of various planning algorithms. The first

Fig. 10 Two-run GAs
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Table 1 Job allocation results comparison for three datasets (priority jobs)

Planning algorithms
by single-run GA

Planning algorithms
by two-run GA

Planning algorithms
by GT

First data set where priority jobs are allocated to

1st Priority line 192747(45.54%) 246076(58.14%) 272227 (64.32%)

2nd Priority line 142818 (33.74%) 130123 (30.74%) 100000 (23.63%)

3rd Priority line 62820 (14.84%) 47066 (11.12%) 51038 (12.06%)

4th Priority line 24880 (5.88%) 0 0

Other priority lines 0 0 0

Second data set where priority jobs are allocated to

1st Priority line 209278 (70.20%) 284023 (95.27%) 286317 (96.04%)

2nd Priority line 88388 (29.65%) 14095 (4.73%) 11801 (3.96%)

3rd Priority line 452 (0.15%) 0 0

4th Priority line 0 0 0

Other priority lines 0 0 0

Third data set where priority jobs are allocated to

1st Priority line 277453 (26.70%) 337346 (32.46%) 541433 (52.09%)

2nd Priority line 307441 (29.58%) 357040 (34.35%) 224418 (21.59%)

3rd Priority line 239941 (23.09%) 215406 (20.73%) 160044 (15.40%)

4th Priority line 98752 (9.50%) 65597 (6.31%) 0

Other priority lines 115742 (11.14%) 63940 (6.15%) 113434 (10.91%)

data set has 988,638 jobs to plan, of which 423,265 are pri-
ority jobs and the remaining 565,373 are normal jobs. The
second data set consists of 803,891 jobs with 298,118 prior-
ity jobs and 505,773 normal ones. The third data set has
1,385,121 jobs, of which 1,039,329 are priority jobs and
354,792 are normal ones.

The GT planning algorithms emphasize particularly
whether or not job orders can be allocated to priority sewing
lines, while GA planning algorithms place more emphasis
on whether or not job orders can be finished on time. There-
fore, it can be seen from Table 1 and Fig. 11 that the higher
percentage of priority jobs has been allocated to the first pri-
ority (most preferred) lines by GT algorithms in all three data
sets. The results of GAs show that jobs have been allocated
to sewing lines according to the defined preferences. More-
over, it can be seen in Table 1 that a higher percentage of
priority jobs can be allocated to the first priority sewing lines
by two-run GAs than single-run GAs.

On the other hand, GAs out perform GT algorithms in
terms of job on-time completion. It can be seen from Table 2
that the on-time cost of results from the GT algorithms is
higher than that from GAs. Since GT algorithms place more
emphasis on allocating jobs to preferred sewing lines, fewer
jobs can be finished on time and the resulting on-time cost
is therefore higher. GAs, both single run and two-run, can
achieve a better total fitness in all three datasets. This implies
that GAs can better balance the two objectives of allocating
job orders to preferred lines and on-time completion of all
jobs. This is because GAs optimise job allocation, but GT
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Fig. 11 Percentage of prioriy jobs being allocated to preferred sewing
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algorithms are only planning heuristics that cannot guaran-
tee optimal planning.

Moreover, in terms of allocating priority and normal jobs
in separated runs, GAs require fewer generations to reach a
solution than doing this in one single run. The result of the
group-assignment fitness (the reciprocal of the group-assign-
ment cost 1/CG) and the total fitness for one data set are
used to show the difference of the two approaches of GAs. It
can be shown from the total fitness in Fig. 12b, d that fewer
generations are needed for two-run GAs to search a solu-
tion. For example, the GAs results of the third data set were
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Table 2 Production planning
cost comparison of three data
sets

Planning algorithms
by single-run GA

Planning algorithms
by two-run GA

Planning algorithms
by GT

First data set on-time cost∑
CT

0 0 93.3707

Group-assignment cost
∑

CG 0.221263 2.10597 1.45300

Total fitness � 4.519516 0.47484 0.01054

Second data set on-time cost∑
CT

0 0 39.9122
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CT

33.8454 0 58.8582

Group-assignment cost
∑

CG 38.3195 7.181704 35.1989
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Fig. 12 Fitness comparison of single-run GAs and two-run GAs

obtained by a 20,000-generation of single-run GAs; but with
the same population size of 300, two-run GAs took fewer gen-
erations to obtain job allocation results (total 10,000 genera-
tions, i.e., two 5,000-generations). The difference is because
GAs can search the optimal solution more easily within a
smaller searching space.

As shown in Fig. 12c, the final group-assignment cost
after the two runs of GAs (the value at 10,000 generations)
is higher than that after the first run (the value at 5,000 gen-
erations in the figure). This is because the scheduled results

of the first run are kept as the system initial conditions in
the second run of GAs, where more jobs are allocated to the
sewing lines. Therefore, the final group-assignment cost has
incorporated group-assignment costs of that in the first run
for priority jobs.

It can also be seen from the results that if more jobs are
to be allocated in one single planning exercise, GAs require
more generations to reach a solution. Data set 3 has the largest
number of job orders (about 50% more than data sets 1 and
2), and a single-run GA took 20,000 generations to search
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Fig. 13 User interface of Excel planning spreadsheet

the optimal plan, which is double the number of generations
required for data sets 1 and 2. It is again a problem of search-
ing space, in that if more jobs are allocated in a planning
exercise, then this is represented by a longer integer chromo-
some and the potential combinations increase exponentially.
In such a case, the optimisation problem becomes more chal-
lenging. This is shown by splitting the searching into two runs
that can drastically reduce the searching time, as data set 3
took the same number of generations (5,000 + 5,000 genera-
tions) to search the optimal plan as that in data sets 1 and 2 in
two-run GAs. Besides, from the total fitness, it can be seen
that two-run GAs obtained the best results among the three
algorithms for the huge data set 3.

There is a choice between single-run GAs and two-run
GAs. If allocating job orders in two separate runs, higher
priority jobs can be allocated to preferred lines. However,
there is a chance that the capacities of these sewing lines will
be used up quickly, with the result that some jobs must be
completed by non-preferred lines.

In planning GT algorithms, jobs are allocated based on
predefined allocation preference settings. Preference settings
must be updated whenever the situation is changed. It is not
guaranteed that the production plan obtained is an optimal
one. However, GAs search for the optimal plan based on
a defined fitness function, and GAs can easily be adapted
to different planning objectives by changing the definition
of the fitness function. For the GT planning algorithms, it
is less easy to adapt to objective or condition changes. For

example, as shown in Fig. 4, the preferred sewing lines for the
Job Group 1 are lines HB, HP, HC, etc. The job orders of job
group 1 are allocated to sewing line HB until it does not have
enough capacity left for new jobs, then the job orders are allo-
cated to the second preferred sewing line (i.e. line HP) until it
is again fully occupied. If the conditions have changed, in that
there are no differences in terms of assigning job orders to
either HB or HP for job group 1 orders, planning algorithms
cannot manage such preference changes. The only solution is
to change the algorithm itself. However, in the case of GAs, it
is only necessary to change the weights in the fitness function.
GAs are therefore more robust than GT if the strategies or
preferences are changing frequently. In GAs, the optimal pro-
duction plan can be found once a fitness function is defined.

Although the overall performance of GAs is better than
that of GT, GT is quicker at finding a solution. It is a choice
between performance and time. GT planning algorithms take
less than one minute to complete automatic planning and to
obtain a result, while GAs take much longer time (3 h or
more) to obtain a result. Single-run GAs take longer than
two-run GAs. Without considering the better planning qual-
ity of GAs, the time required for GAs to generate an optimal
production plan is still much less than doing this manually.
The proposed production planning algorithms have demon-
strated substantial improvements in terms of planning quality
and efficiency, and such algorithms are currently being used
by apparel manufacturers in Hong Kong for routine plan-
ning operations. Figures 13 and 14 are screenshots of user
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Available Capacity vs. Capacity Utilization (Factory)
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Fig. 14 Planning results shown in comparing available and utilized
resources

interfaces and the resulting capacity utilization charts of the
Excel planning spreadsheet. The algorithms are also flexi-
ble when it comes to handling issues such as inserting rush
orders, changing order due dates and size, etc. The proposed
planning solutions have proved to be user friendly and cost
effective for the industry.

Conclusions

Apparel production planning is a challenging task in that
job orders must be allocated to suitable production lines
to ensure the effective utilization of resources and the on-
time completion of all job orders. In this paper, intelligent
planning algorithms have been proposed for automatic job
allocations in apparel manufacturing based on group tech-
nology and genetic algorithms. In order to speed up the plan-
ning efficiency, two GA approaches including single-run and
two-run GAs have been developed to optimise the job allo-
cation problem. The proposed algorithms have been built
as Excel add-in functions, allowing apparel organizations of
different sizes to easily define their manufacturing systems
and complete the complex planning on Excel spreadsheet in
a few clicks. The proposed functions have also been inte-
grated with large ERP systems in some apparel companies
to improve the production planning effectiveness and effi-
ciency. In this paper, real production data has been used to
validate the methods. The proposed planning algorithms have
demonstrated a substantial improvement in terms of planning
quality and efficiency. These intelligent algorithms are cur-
rently adopted by apparel manufacturers in Hong Kong for
their routine planning operations.
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