

The current issue and full text archive of this journal is available at www.emeraldinsight.com/0955-6222.htm

Modeling of needle penetration force in denim fabric

Ezzatollah Haghighat and Seyed Mohammad Etrati Amirkabir University of Technology, Tehran, Iran, and

Saeed Shaikhzadeh Najar Department of Textile Engineering, Tehran, Iran Modeling of NPF

361

Received 9 June 2012 Revised 1 October 2012 Accepted 16 February 2013

Abstract

Purpose – This paper aims to predict the needle penetration force (NPF) in denim fabrics using the artificial neural network (ANN) and multiple linear regression (MLR) models based on the effects of various sewing parameters.

Design/methodology/approach – In order to design the ANN and MLR models, four parameters including fabric weight, number of fabric layers, weave pattern, and sewing needle size are taken into account as the input parameters and NPF as the output parameter. According to these parameters, 140 samples of data were resulted. Each sample was tested five times. From these 140 data (input-output data pairs), 112 were used for training the ANN and MLR models and 28 samples were used to test the performance of ANN and MLR. Also, the NPF was measured on the Instron tensile tester to simulate sewing process.

Findings – The results indicated that the NPF in denim fabrics can be well predicted in terms of sewing parameters by using ANN and MLR models, in which the ANN model exhibits greater performance than MLR (RANN = 0.989 > RMLR = 0.901).

Research limitations/implications – The NPF measurement method is limited at low speed.

Originality/value – Using the ANN model for forecasting NPF in denim fabrics can help the garment manufactures to produce high-quality denim products and improve the sewing process through reducing seam damage. The NPF could be also measured in the cycle loading conditions similar to sewing machine process by using a special designed tools mounted on the Instron tensile tester.

Keywords Denim fabric, Neural network, Sewing parameters, Needle penetration force

Paper type Research paper

1. Introduction

Nowadays, the role of garment industry in economic activities and human life is considerable (Guo *et al.*, 2011). Among woven fabrics which are used in garment industry, the denim fabrics are widely used as a main part of the garment fashion. Denim apparel is promoted by many consumers around the world; in particular, the success of these fabrics usage is because of its compatibility with every society and culture (Card *et al.*, 2006). The high quality of garments not only does depend on fabric quality, sewing threads and sewing machine parameters, but also depends on fabric sewability (Behera and Chand, 1997). The sewability of fabrics and its importance has been considered in the process of garment manufacturing. The sewability is defined as the ability of the material to be sewn efficiently and to provide a suitable performance for its end use (Stylios *et al.*, 1994). The study of sewability can help better

International Journal of Clothing Science and Technology Vol. 25 No. 5, 2013 pp. 361-379 © Emerald Group Publishing Limited 0955-6222 DOI 10.1108/IJCST-01-2012-0031

The authors greatly appreciate the guidance and help given by Prof. Jafargholi Amirbayat, and also Khoy Textile Company for the materials supplied.

IJCST 25,5

362

comprehending of the interactions between one or more plies of fabric which are sewn with sewing thread (Zeto *et al.*, 1996).

Needle penetration force (NPF) is an important factor influencing on the quality of seams and fabric sewability. The NPF is created by the friction between the martial and sewing needle (Ujević *et al.*, 2008).

The researchers measured NPF to investigate the sewing damage in fabrics during sewing process.

A high penetration force is one of the key reasons causing the sewing damage; on the other hand, a fabric with high penetration force is more susceptible to damage. Sewing damage has directly negative effects on quality of garment. Therefore, the quantitative value of NPF could be used to determine the damage of sewn fabrics during sewing process (Stylios and Zhu, 1998; Zeto *et al.*, 1996; Gurarda and Meric, 2005).

The types of material, number of fabric layers, weave pattern, sewing needle size, and shape of needle point have a profound effect on the sewing NPF (Stylios and Xu, 1995; Ujević *et al.*, 2008).

The researches on NPF can be classified into three categories including the development of an instrument to measure the NPF (Carvalho *et al.*, 2009; Rocha *et al.*, 1996), the investigation of parameters that influence the NPF (Gurarda and Meric, 2007), and predicting the NPF based on theoretical and finite element methods (Lomov, 1998; Mallet and Du, 1999).

In particular, artificial neural network (ANN) and fuzzy logic models are other techniques of modeling, which are used in textile industry. In recent years, ANN has been successfully used in garment industry (Park *et al.*, 1997; Hui and Ng, 2005; Jaouadi *et al.*, 2006).

Stylios and Sotomi (1995) have applied neuro-fuzzy system to model the control of sewing machinery for complicated interactions with limp materials. At first, in order to predict fabric sewability from fabric properties a neural network was applied. Then for optimizing foot pressure and thread tension, the obtained sewability parameter was combined with machine speed in a fuzzy logic system. It was found it could be possible to optimize sewing machines settings under any sewing materials. Also, the foot and disc forces of sewing machines were optimized using the ANN model and neuro-fuzzy logic. The accuracy of the control system was verified by a good agreement between the target and obtained control surfaces for the foot and disc forces (Stylios and Sotomi, 1996).

Park and Kang (1999) objectively evaluated the seam pucker with five shape parameters by using three-dimensional image analysis and artificial intelligence. Barrett *et al.* (1996) developed an on-line fabric classification method to improve stitch formation and seam quality in sewing machine using a wavelet-based neural network approach. Needle penetration and presser foot forces were measured during sewing process and decomposed by using the wavelet transform. Prominent features were extracted by the wavelet transform of the NPF from the input to an ANN that classifies the type of fabric and number of sewn plies.

A new approach for forecasting seam pucker in garment manufacture was examined using ANNs (Stylios and Moore, 1993). The fabric bending stiffness, thickness, and weight were used as inputs to a neural network. The back-propagation (BP) technique was found especially successful to predict the seam pucker.

Hui *et al.* (2007) used ANN with the BP algorithm for the prediction of fabric sewing performance based on the fabric properties. The physical and mechanical properties of

fabrics were considered as input units. The sewing performance was identified in Modeling of NPF terms of seam pucker, sewing needle damage, fabric distortion, and fabric overfeeding. Also, Hui and Ng (2009) designed the ANN to predict seam performance of commercial woven fabrics based on seam puckering, seam flotation, and seam efficiency.

Midha *et al.* (2010) designed an ANN model to predict the strength loss in threads during high speed industrial sewing. The different types of threads, thread linear density, fabric area density, number of fabric layers, stitch density, and needle size were used as input parameters. It was observed that the neural network system is able to predict the tenacity loss of threads after sewing. The seam strength of notched webbings for parachute assemblies was investigated using ANN and the Taguchi's design of experiments (Onal *et al.*, 2009). The results showed that the preciseness of ANN model is higher than Taguchi's design.

Few researchers theoretically predicted NPF and considered fabric and sewing parameters. However, there is no research work available predicting the NPF in denim fabrics using ANN and multiple linear regression (MLR) models. Therefore, this paper presents two models, ANN and MLR, in order to predict NPF and consequently sewing damage in denim fabrics.

2. Descriptions of the models

2.1 Artificial neural networks

ANN (neural networks) is a powerful modeling technique enabling to present any kinds of input-output relationship, and also to solve problems which are difficult for conventional computers or human beings (Majumdar, 2011).

When an ANN is trained, a particular input leads to a specific target output. A network can have several layers, each of which has a weight matrix W, a bias vector b, and an output vector. The layers of a multi-layer network have different performances. The network output is presented in an output layer. The rest of layers are hidden layers. Among the various kinds of networks, feed-forward BP network is widely used. BP trains multi-layer feed-forward networks with differentiable transfer functions. There are various training algorithms for feed-forward networks including *Trainlm*, *Traingdm* and so on. All these algorithms apply the gradient of the performance function (PF) to identify how to set the weights to minimize performance. *Trainlm* is often the fastest BP algorithm (MATLAB software, 2008).

PF allows a network's behavior to be graded. The typical PF used for training feed-forward networks is the mean squared errors of network (*mse*), mean squared error regularization (*msereg*), and sum of squared error (*sse*) are the other PF. In ANN, learning functions such as *Learngd* or *Learngdm* are used. Transfer functions calculate a layer's output from its net input. There are many forms of transfer functions from a simple linear scaling to nonlinear functions (Figure 1) including *Purelin*, *Logsig*, and *Tansig*, etc. Neural network training can be made more efficient if the preprocessing steps perform on the network inputs and targets (MATLAB software, 2008).

2.2 Multiple linear regression

MLR models are built from a potentially large number of predictive terms. The number of interaction terms augments exponentially with the number of predictor variables. The purpose is to develop a model of the relationship between one dependent variable Y and one or more independent variables X. The model gives the part of the variability of Y

IJCST 25,5	taken in account or explained by the variation of <i>X</i> (MATLAB software, 2008). The MLR model has been used as predictive model in textile problems (Haghighat <i>et al.</i> , 2012).

3. Materials and methods

3.1 Fabric sample and needle size

In order to predict the needle NPF, seven commercial samples of denim fabrics with different weights and weave patterns, commonly used for clothing, were prepared (Table I). It is known the needle size is one of the main factors influencing the NPF. Thus, five needles with different sizes (80, 90 100, 110, 120 Nm) were selected.

3.2 Measurement of NPF

Measuring of NPF has been performed on an Instron 5566 tensile tester (Figure 2(b)). In order to hold the fabric samples on the Instron tensile tester, a ring (Figure 2(a)) which previously was designed and constructed used (Doustar *et al.*, 2010). To prevent vertical movement of fabric during needle piercing, the ring was modified in such a way that two emery papers were stuck to its surfaces. The ring is mounted on the bottom jaw of Instron tensile tester. The needle was attached to the upper jaw of Instron by using a special designed needle bar (Figure 2(c)), so that the position of needle penetration relative to the center of ring to be eccentric. It is noted that with eccentric position of needle, it is possible to have different places on the fabric sample during needle penetration by rotating the ring.

To simulate the motion of needle in sewing machine, the cyclic penetration was performed five times for each fabric sample. The needle insertion speed and depth of needle insertion into the fabric structure were 460 mm/min and 12 mm, respectively.

Besides to fabric type and needle size effects, the fabric layer effect is also considered. As a consequence, according to the different fabric types, fabric layers and

I ubic I.	
Physical characteristic	cs
of denim fabrics	

364

tensile tester

Notes: (a) Ring; (b) Instron tensile tester together with special attachments; (c) needle bar

needle size (seven different fabrics, four various layers and five needle size), the number of samples is 140. Each sample was tested five times; therefore, the total number of examined cases was 720. Figure 3 shows a typical result of NPF versus time obtained in this research on the Instron tensile tester.

The force that is considered as NPF is the maximum penetration force between five cycles for each sample. Thus, the average of NPF values for five tested cases of sample was calculated. Table II shows the experimental values of NPF in different conditions.

In order to observe the sewing damage as a result of needle penetration process, some pictures are captured from fabric surface by using a proper digital lens (Dino Capture) connecting to the PC.

3.3 ANN model

In order to normalize and scale the input and output values in neural network, before training, the mapminmax preprocessing is used. It causes the input and output

Figure 3. A typical NPF versus time at five cycles loading

HCCT						
1JCS1 25.5	No.	NFL	NS	FW	WP	NPF
20,0	1	1	80	225	T2/1	2.9
	2		90			3.7
	3		100			4.4
266	4 5		120			5.0 6.0
300	6		80	300	T3/1	2.2
	7		90			2.5
	8		100			2.6
	9		110			4.5
	10		120	270	TO/1	4.7
	11 12		80 90	570	15/1	3.0 3.5
	12		100			4.7
	10		110			6.6
	15		120			7.2
	16		80	402	T3/1	3.5
	17		90			4.7
	18		100			5.3
	19 20		120			9.0
	20		80	421	T3/1	4.3
	22		90			5.4
	23		100			5.5
	24		110			7.2
	25		120	4.41	/TO /1	9.2
	26 27		80	441	13/1	5.7
	28		100			9.0
	29		110			11.1
	30		120			12.0
	31		80	375	T2/1	4.7
	32		90			6.6
	33		100			6.6 7.4
	34 35		110			7.4
	36	2	80	225	T2/1	5.4
	37		90	220		6.6
	38		100			7.5
	39		110			10.4
	40		120	000	/TO0 /1	12.0
	41		80	300	13/1	3.5
	42 43		100			5.0
	44		110			7.3
	45		120			8.0
	46		80	370	T3/1	6.0
Table II.	47		90			6.5
The measured	48		100			8.4
experimental values	49 50		110 120			12.0
conditions	50		120			(continued)
						(commuta)

Modeling of NET	NPF	WP	\mathbf{FW}	NS	NFL	No.
	7.1	T3/1	402	80		51
	9.2			90		52
	10.3			100		53
	14.9			110		54
265	15.1			120		55
307	8.0	T3/1	421	80		56
	10.1			90		57
	10.4			100		58
	13.8			110		59
	16.6			120		60
	11.6	T3/1	441	80		61
	15.3			90		62
	15.6			100		63
	20.3			110		64
	21.8			120		65
	8.3	T2/1	375	80		66
	11.0	1 = 1	010	90		67
	11.0			100		68
	14.8			110		69
	16.1			120		70
	76	T2/1	225	80	3	71
	10.1	12/1	220	90	0	72
	12.2			100		73
	15.2			110		73
	17.5			120		75
	47	T3/1	300	80		76
	66	10/1	000	90		77
	0.0 7.2			100		78
	11.4			110		70
	11.4			120		80
	76	T2/1	370	80		81
	10.3	10/1	570	90		82
	10.5			100		83
	12.4			110		84
	18.8			120		85
	10.0	T2/1	402	80		86
	12.4 12.9	13/1	402	00		87
	12.0			100		01 QQ
	14.5			100		80
	10.1			110		09
	21.0	T2/1	491	120		90
	11.0	13/1	421	00		91
	10.1			90		92
	10.2			100		93
	21.0			110		94 05
	21./ 15.0	TO/1	4.41	120		90 06
	10.9	13/1	441	ðU 00		90 07
	21.7			90		97
	21.8			100		98 00
	27.1			110		99 100
	30.4			120		100
T-1.1 T	, ,					

1JCS1 255	No.	NFL	NS	FW	WP	NPF
20,0	101		80	375	T2/1	11.1
	102		90			15.2
	103		100			17.8
	104		110			21.0
368	105		120			25.6
500	106	4	80	225	T2/1	9.8
	107		90			13.4
	108		100			15.8
	109		110			20.0
	110		120			22.6
	111		80	300	T3/1	7.4
	112		90			6.3
	113		100			8.5
	114		110			12.2
	115		120			15.3
	116		80	370	T3/1	10.4
	117		90			12.4
	118		100			13.4
	119		110			20.0
	120		120	100	mo /r	21.0
	121		80	402	T3/1	10.9
	122		90			13.8
	123		100			17.3
	124		110			24.0
	125		120	101	TD0 /1	25.0
	126		80	421	13/1	13.0
	127		90			17.5
	128		100			18.0
	129		110			24.0
	130		120	4.41	TO/1	26.9
	131		80	441	13/1	20.2
	152		90			24.4
	100		100			20.2 25.7
	134		110			00.7 20.2
	150		120	275	T9/1	39.2 14.0
	130		00	575	$1 \angle / 1$	14.9
	137		100			19.2
	130		110			20.0
	140		120			20.0
	140		120			25.0
7 11 H	Notes: NP	F – needle penetra	tion force (N); NS	6 – needle size (Nr	m); FW – fabric w	eight (g/m ²);
I able II.	wP – wea	ve pattern				

values fall within a specified range eliminate the influence of different units of their parameters, and remove any influence of quantitative effects on the training process (MATLAB software, 2008). According to equation (1), the input and output values (v_i) are scaled in the range [-1, 1] by using the function mapminmax (Chattopadhyay and Guha, 2004):

$$x_i = 2\left(\frac{v_i - v_{\min}}{v_{\max} - v_{\min}}\right) - 1 \quad i = 1, 2...n$$
(1) Modeling of NPF

where xi is the scaled value, v_{max} and v_{min} are respective maximum and minimum values of input and output.

For predicting the NPF, several neural network models with two and three layers were planned. The designed networks have four input units and one unit output (Figure 4).

Moreover, 12 ANNs (*N1...N12*) with different data sets, different transfer and PFs, number of hidden layers, and number of neurons in hidden layers, were designed (Table III). In all networks, *Trainlm* was used as learning function.

To model the ANN, first, the five-fold cross-validation technique was used. Hence, the data set of 140 samples was randomly divided into five subsets. The subsets were combined together and five sets of training and testing data were formed. Each time, four subsets were used for training set and one subset for testing set (training set and test set contain 112 and 28 samples, respectively), accordingly, each planned network was trained and tested five times.

Figure 4. Architecture of a multilayer feed forward network

> Table III. Different network architectures

Code	Network structure	Learning function	Performance function	No. of hidden layers	Ti Hidden layer 1	ransfer func Hidden layer 2	tion Output layer
N1	4-8-6-1	LearnGDM	mse	2	Tansig	Tansig	Tansig
N2	4-8-6-1	LearnGDM	msereg	2	Tansig	Tansig	Purelin
N3	4-8-6-1	LearnGDM	sse	2	Tansig	Tansig	Tansig
N4	4-10-8-1	LearnGDM	mse	2	Tansig	Tansig	Purelin
N5	4-8-1	LearnGDM	mse	1	Tansig	_	Tansig
N6	4-8-1	LearnGD	mse	1	Tansig	_	Purelin
N7	4-6-1	LearnGD	mse	1	Tansig	_	Purelin
N8	4-8-6-1	LearnGDM	mse	2	Tansig	Purelin	Purelin
N9	4-8-1	LearnGD	mse	1	Tansig	_	Tansig
N10	4-8-6-1	LearnGD	mse	2	Tansig	Logsig	Purelin
N11	4-8-6-1	LearnGD	mse	2	Tansig	Tansig	Logsig
N12	4-6-1	LearnGD	mse	1	Tansig	-	Logsig

369

Then, the training sets (112 samples) were used for training the designed neural networks. Finally, after training the networks, it is essential to evaluate the stability and the performance of achieved networks; thus the testing sets (28 samples) were applied for testing the networks. In this study, the MATLAB (R2008b) software was used to perform neural network and MLR modeling.

3.4 MLR model

In the present work, MLR model was presented to predict the NPF based on independent variables of sewing parameters including fabric weight, number of fabric layers, needle size and weave pattern.

For this purpose, the same five sets of data (training and testing sets) in ANN model were used for the MLR algorithm. At first, the MLR models were developed by samples of training sets. Then, the created algorithms were assessed by the testing data sets.

For instance, by using the first set of data, the equation (2) was derived with a MLR algorithm:

Needle penetration force =
$$-26.17 + 3.981*NFL + 0.224*NS + 0.055*FW$$

- 0.475^*WP (2)

where NFL: no. of number of fabric layers, *NS*: needle size, *FW*: fabric weight, and *WP*: weave pattern.

4. Result and discussion

4.1 The performance of ANN and MLR models in predicting NPF

In this study, two different models of were developed to predict the NPF. The capability of ANN model for forecasting the NPF was examined by designing several architectures of ANN.

For each model, ANN and MLR models, the values R and MSE (equation (3)) between the experimental and predicted values of NPF were calculated. Moreover, to verify the network model, PF/3 value was used. Since this factor is more sensitive to the difference between experimental and predicted values; it shows more precise results than correlation coefficient:

$$MSE = \frac{\sum_{i=0}^{n} (p_i - e_i)^2}{n}$$
(3)

where *MSE* is mean square error between experimental and predicted values, *p*:: predicting value, *e*: experimental value, and *n*: is the number of patterns.

In order to investigate the performance of ANN and MLR models for forecasting NPF, the designed ANN and MLR models were evaluated using the testing data sets. The achieved results of models are given in Tables IV-VI.

In Table IV, the values of *R*, *PF/3*, and *MSE* obtained by testing networks with five testing data sets are separately depicted. Table V presents the average of these values, which were obtained by training networks with five training data sets.

These results show that the efficiency of ANN for prediction NPF is high (N1...N10), however some networks do not have great efficiency (N11, N12). Among the trained networks, network N9 has partly the greatest performance on the training and testing data sets.

IICST

25,5

			Testing		Modeling of NPF
Code	Data set	<i>R</i> -value	PF/3	MSE	
N1	1	0.963	18.196	6.182	
	2	0.983	11.195	5.016	
	3	0.993	6.929	0.562	
	4	0.995	6.211	0.428	371
	5	0.988	12.233	0.669	011
	Average	0.984	10.953	2.571	
N2	1	0.922	21.287	13.417	
	2	0.986	9.790	6.179	
	3	0.988	9.661	1.011	
	4	0.992	8.145	0.480	
	5	0.993	7.523	0.932	
	Average	0.976	11.281	4.404	
N3	1	0.938	21.003	8.975	
	2	0.986	9.784	5.158	
	3	0.973	14.971	2.706	
	4	0.990	9.767	0.813	
	5	0.992	9.452	1.809	
	Average	0.976	12.995	3.892	
N4	1	0.933	21.372	14.287	
	2	0.969	14.588	5.234	
	3	0.993	7.622	0.975	
	4	0.989	10.951	0.923	
	5	0.989	9.093	1.237	
	Average	0.975	12.725	4.531	
N5	1	0.975	13.969	3.452	
	2	0.992	7.969	1.004	
	3	0.991	7.200	0.942	
	4	0.988	9.600	4.583	
	5	0.985	9.946	0.877	
	Average	0.986	9.737	2.171	
N6	1	0.972	17.927	8.478	
	2	0.992	7.134	0.933	
	3	0.993	8.497	2.389	
	4	0.994	6.741	0.445	
	5	0.982	15.034	0.869	
	Average	0.986	11.066	2.623	
N7	1	0.981	17.238	6.659	
	2	0.993	8.440	1.606	
	3	0.987	11.331	2.658	
	4	0.987	10.080	0.849	
	5	0.985	13.709	0.743	
	Average	0.986	12.160	2.503	
N8	1	0.988	11.258	2.039	
	2	0.994	7.152	0.851	
	3	0.984	14.385	4.102	
	4	0.990	9.252	0.852	
	5	0.988	8.697	0.769	
	Average	0.989	10.149	1.722	Table IV.
N9	1	0.982	12.304	2.941	Performance of ANN
				(continued)	model on testing data gate

HCST					
25,5	Code	Data set	<i>R</i> -value	Testing <i>PF/3</i>	MSE
		2	0.992	8.001	1.116
		3	0.993	8.198	2.985
		4	0.986	11.366	0.902
279		5	0.991	10.210	0.658
312		Average	0.989	10.016	1.720
	N10	1	0.923	22.846	10.996
		2	0.993	8.485	0.881
		3	0.976	13.614	2.104
		4	0.994	6.624	0.362
		5	0.969	14.433	1.410
		Average	0.971	13 201	3.150
	N11	1	0.512	55.046	69.947
	1111	2	0.703	50.105	74.092
		3	0.371	63 518	117 252
		4	0.267	63 777	133 170
		5	0.597	63 / 39	176.873
		Average	0.007	59177	11/ 267
	N12	1	0.430	/3 972	/5 978
	1112	2	0.660	51 669	75 312
		2	0.000	57 770	116 157
		3	0.333	64 368	122 170
		5	0.685	58 521	196 873
Table IV.		Average	0.622	55.262	99.498
	Code	<i>R</i> -value		Training PF/3	MSE
	N1	0.981		13.039	2.176
	N2	0.978		12.998	2.494
	N3	0.974		14.319	2.918
	N4	0.977		13.429	2.687
	N5	0.986		11.241	1.437
	N6	0.988		12.725	1.513
	N7	0.986		13.347	1.508
	N8	0.983		13.269	2.382
Table V.	N9	0.987		11.567	1.601
Performance of	N10	0.971		16.745	3.999
ANN model on training	N11	0.475		66.036	127.002
data sets	N12	0.659		60.610	107.679

Generally, according to the results, it is clear that the performance of the ANN model is better than MLR model. For example, the network *N9* is compared with MLR model; it is observed that the performance of *N9* to predict the NPF is higher than the performance of MLR model. The average of *R*-value in *N9* is higher than the average of *R*-value in MLR on testing data sets (0.989 > 0.901), and *MSE* value for *N9* is less than corresponding value for MLR model (1.720 < 10.594).

For example, the performance of network N9 to predict the NPF is high. The Modeling of NPF average of R-values on training and testing data sets in N9 are 0.987 and 0.989, respectively. In addition, the MSE values on training and testing data sets are 1.720 and 1.601, respectively. However, the performance of MLR model to predict the NPF with average values of R and MSE (0.901 and 10.594) on testing data sets is not acceptable.

In addition, the value of PF/3 shows that the preciseness of ANN in network N9 to predict the NPF is 90 percent.

	Train	ning	Test	ting	
Data set	R-value	MSE	R-value	MSE	
1	0.903	7.090	0.902	15.578	
2	0.908	8.738	0.916	12.017	
3	0.913	9.561	0.905	8.407	Table VI
4	0.911	9.798	0.892	7.342	Performance of MLF
5	0.910	9.358	0.890	9.629	model on training and
Average	0.909	8.909	0.901	10.594	testing data sets

Figure 5. The relationship between experimental and predicted (ANN model; N9) values of NPF on testing data set 1

Figure 6. The relationship between experimental and predicted (ANN model; N9) values of NPF on testing data set 2

373

Totally, the performance of ANN is better than MLR model. Figures 5-10 show the relationship between experimental and predicted values on testing data sets in the network *N9*, and on testing data set 2 in MLR, which confirm the neural networks are suitable method for forecasting NPF.

IJCST 25,5

Figure 7. The relationship between experimental and predicted (ANN model; *N9*) values of NPF on testing data set 3

The relationship between experimental and predicted (ANN model; *N9*) values of NPF on testing data set 4

Figure 9. The relationship between experimental and predicted (ANN model; *N9*) values of NPF on testing data set 5

The architect of networks is important factor to have the best predicting values. By Modeling of NPF comparing the planned networks (N1...N12), it is observed that the transfer function is one of the important parameters in network architect. The results show that using *Logsig* in output layer is not reasonable, because the performance of networks dramatically reduces (N11, N12). The statistical analysis (One Way ANOVA) clears that the PFs have no significant influence on the performance of neural networks (N1, N2 and N3).

According to Tables IV and V, it is generally concluded that by increasing the accuracy of network, the performance of network to predict NPF increases. For instance, in networks which have an appropriate architect, the average values of R and *MSE* on training data sets are satisfactory. As a result, the performance and stability of model to predict NPF on testing data sets increases (i.e. the value of R increases and MSE decreases).

Moreover, if the methodology of networks is not properly selected, as it could be found in networks N11 and N12, the stability of model for predicting NPF will not be acceptable.

The poor performance of MLR model in prediction NPF infers that the correlation between sewing parameters and the NPF is partially nonlinear, because the MLR is based on the first order equations. Thus, the results of this work showed that ANN model with one or two hidden layers is proper for nonlinear relationships.

4.2 The effect of needle size on the NPF and predicting the sewing damage

As is well known and mentioned before, the NPF is an indication of sewing damage in fabric and hence the sewing damage increases with NPF. Moreover, it was confirmed that the sewing needle size and shape of needle point have a main influence on the NPF and sewing damage (Stylios, 1986; Stylios and Xu, 1995).

The statistical analysis of data shows that at a specified number of fabric layers, fabric weight and weave pattern, with increase of needle size the values of NPF increases. For instance, the effect of needle size on NPF for fabrics with T3/1 weave pattern was presented in Figure 11.

Generally, NPF increases when the diameter of needle becomes greater, especially, in the heaviest fabric (D7: 441 g/m^2). The same trend was obtained for fabrics with T2/1 weave pattern (Table II).

Notes: (a) One layer; (b) two layers; (c) three layers; (d) four layers

The sewing damage was affected by needle size and it increases when the needle becomes coarser.

This phenomenon is well demonstrated in Figure 12. It is clear that with a coarser needle, the sewing damage over the fabric surface is increased. Therefore, by predicting NPF using ANN and MLR models, it is possible to forecast the sewing damage.

Nevertheless, in order to minimize the sewing damage caused by needle, according to type and characteristics of fabric and sewing threads, the correct needle type and size can be selected (Stylios and Zhu, 1998).

5. Conclusion

In this paper, two models including ANN and MLR were developed to predict the NPF in denim fabrics. In ANN model, several architectures of feed-forward BP networks were planned. In these models the fabric weight, number of fabric layers, weave pattern and needle size are used as inputs and NPF as output values.

Modeling of NPF

377

(b)

fabric surface

Notes: (a) Needle 80 Nm; (b) needle 100 Nm; (c) needle 120 Nm

According to results, both of models could predict the NPF in denim fabrics. However, it is found that the performance of ANN model was more precise than that of MLR model, since the values R and MSE in ANN model in compared with MLR model were higher and much lower, respectively. The result suggests that ANN has a greater great

Figure 12. Pictures of needle penetration through the

IJCST 25,5 efficiency in prediction of penetration force. The calculated value of *PF/3* exhibited that the prediction accuracy of the developed ANN model was 90 percent. The results also showed that the relationship between input parameters (fabric weight, number of fabric layers, weave pattern, and sewing needle) and NPF is nonlinearly correlated. This study also indicated that the NPF could be predicted with high accuracy based on fabric properties and sewing parameters in denim fabrics. The use of ANN model for forecasting NPF in denim fabrics can help the garment manufactories to produce high quality denim products and improve the sewing process through reducing sewing damage. Further research works are needed to extend this study for other fabric types particularly elastic woven structures.

References

- Barrett, G.R., Clapp, T.G. and Titus, K.J. (1996), "An on-line fabric classification technique using a wavelet-based neural network approach", *Textile Res. J.*, Vol. 66 No. 8, pp. 521-528.
- Behera, B.K. and Chand, S. (1997), "Sewability of denim", International Journal of Clothing Science & Technology, Vol. 9 No. 2, pp. 128-140.
- Card, A., Moore, M.A. and Ankeny, M. (2006), "Garment washed jeans: impact of launderings on physical properties", *International Journal of Clothing Science & Technology*, Vol. 18 No. 1, pp. 43-52.
- Carvalho, H., Rocha, A.M. and Monteiro, J.L. (2009), "Measurement and analysis of needle penetration forces in industrial high-speed sewing machine", J. of the Textile Institute, Vol. 100 No. 4, pp. 319-329.
- Chattopadhyay, R. and Guha, A. (2004), "Artificial neural networks: applications to textiles", *Textiles Progress*, Vol. 35 No. 1, pp. 1-46.
- Doustar, K., Shaikhzadeh Najar, S. and Maroufi, M. (2010), "The effect of fabric design and weft density on bagging behavior of cotton woven fabrics", *J. of the Textile Institute*, Vol. 101 No. 2, pp. 135-142.
- Guo, Z.X., Wong, W.K., Leung, S.Y.S. and Li, M. (2011), "Applications of artificial intelligence in the apparel industry: a review", *Textile Res. J.*, Vol. 81 No. 18, pp. 1871-1892.
- Gurarda, A. and Meric, B. (2005), "Sewing needle penetration forces and elastane fiber damage during the sewing of cotton/elastane woven fabrics", *Textile Res. J.*, Vol. 75 No. 8, pp. 628-633.
- Gurarda, A. and Meric, B. (2007), "The effects of elastane yarn type and fabric density on sewing needle penetration forces and seam damage of PET/elastane woven fabrics", *Fibres & Textiles in Eastern Europe*, Vol. 15 No. 4, pp. 73-76.
- Haghighat, E., Johari, M.S., Etrati, S.M. and Amani Tehran, M. (2012), "Study of the hairiness of polyester-viscose blended yarns, part III – predicting yarn hairiness using an artificial neural network", *Fibres & Textiles in Eastern Europe*, Vol. 20 No. 1, pp. 33-38.
- Hui, C.L. and Ng, S.F. (2005), "A new approach for prediction of sewing performance of fabrics in apparel manufacturing using artificial neural networks", J. of the Textile Institute, Vol. 96 No. 6, pp. 401-405.
- Hui, C.L. and Ng, S.F. (2009), "Predicting seam performance of commercial woven fabrics using multiple logarithm regression and artificial neural networks", *Textile Res. J.*, Vol. 79 No. 18, pp. 1649-1657.
- Hui, P.C.L., Chan, K.C.C., Yeung, K.W. and Ng, F.S.F. (2007), "Application of artificial neural networks to the prediction of sewing performance of fabrics", *International Journal of Clothing Science & Technology*, Vol. 19 No. 5, pp. 291-318.

- Jaouadi, M., Msahli, S., Babay, A. and Zitouni, B. (2006), "Analysis of the modeling Modeling of NPF methodologies for predicting the sewing thread consumption", *International Journal of Clothing Science & Technology*, Vol. 18 No. 1, pp. 7-18.
- Lomov, S.V. (1998), "A predictive model for the penetration force of a woven fabric by a needle", International Journal of Clothing Science & Technology, Vol. 10 No. 2, pp. 91-103.
- Majumdar, A. (2011), "Soft computing in fibrous materials engineering", *Textile Progress*, Vol. 43 No. 1, pp. 1-95.
- Mallet, E. and Du, R. (1999), "Finite element analysis of sewing process", *International Journal of Clothing Science & Technology*, Vol. 11 No. 1, pp. 19-36.
- MATLAB (R2008b), MATLAB software Version 7.7.0.471.
- Midha, V.K., Kothari, V.K., Chattopadhyay, R. and Mukhopadhyay, A. (2010), "A neural network model for prediction of strength loss in threads during high speed industrial sewing", *Fibers and Polymers*, Vol. 11 No. 4, pp. 661-668.
- Onal, L., Zeydan, M., Korkmaz, M. and Meeran, S. (2009), "Predicting the seam strength of notched webbings for parachute assemblies using the Taguchi's design of experiment and artificial neural networks", *Textile Res. J.*, Vol. 79 No. 5, pp. 468-478.
- Park, C.K. and Kang, T.J. (1999), "Objective evaluation of seam pucker using artificial intelligence, part II: method of evaluating seam pucker", *Textile Res. J.*, Vol. 69 No. 11, pp. 835-845.
- Park, C.K., Lee, D.H. and Kang, T.J. (1997), "A new evaluation of seam pucker and its applications", International Journal of Clothing Science & Technology, Vol. 9 No. 3, pp. 252-255.
- Rocha, A.M., Lima, M.F., Ferreira, F.N. and Araujo, M.D. (1996), "Developments in automatic control of sewing parameters", *Textile Res. J.*, Vol. 66 No. 4, pp. 251-256.
- Stylios, G. and Moore, R.P. (1993), "Seam pucker prediction using neural computing", International Journal of Clothing Science & Technology, Vol. 5 No. 5, pp. 24-27.
- Stylios, G. and Sotomi, J.O. (1995), "A neuro-fuzzy control system for intelligent overlock sewing machines", *International Journal of Clothing Science & Technology*, Vol. 7 Nos 2/3, pp. 49-55.
- Stylios, G. and Sotomi, J.O. (1996), "Thinking sewing machines for intelligent garment manufacture", International Journal of Clothing Science & Technology, Vol. 8 Nos 1/2, pp. 44-55.
- Stylios, G. and Xu, Y.M. (1995), "An investigation of the penetration force profile of the sewing machine needle point", J. of the Textile Institute, Vol. 86 No. 1, pp. 148-163.
- Stylios, G., Sotomi, O.J., Zhu, R., Fan, J., Xu, Y.M. and Deacon, R. (1994), "A sewability integrated environment (SIE) for intelligent garment manufacture", paper presented at Factory 2000 – Advanced Factory Automation, Fourth International Conference on (Conf. Publ. No. 398).
- Stylios, G.K. and Zhu, R. (1998), "The mechanism of sewing damage in knitted fabrics", J. of the Textile Institute, Vol. 89 No. 2, pp. 411-421.
- Ujević, D., Rogale, D., Kartal, M. and Šajatović, B.B. (2008), "Impact of sewing needle and thread on the technological process of sewing knitwear", *Fibres & Textiles in Eastern Europe*, Vol. 16 No. 4, pp. 85-89.
- Zeto, W.Y., Dhingra, R.C., Lau, K.P. and Tam, H. (1996), "Sewing performance of cotton/lycra knitted fabrics", *Textile Res. J.*, Vol. 66 No. 4, pp. 282-286.

Corresponding author

Saeed Shaikhzadeh Najar can be contacted at: saeed@aut.ac.ir

To purchase reprints of this article please e-mail: **reprints@emeraldinsight.com** Or visit our web site for further details: **www.emeraldinsight.com/reprints**