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Abstract

Purpose – This paper aims to predict the needle penetration force (NPF) in denim fabrics using the
artificial neural network (ANN) and multiple linear regression (MLR) models based on the effects of
various sewing parameters.

Design/methodology/approach – In order to design the ANN and MLR models, four parameters
including fabric weight, number of fabric layers, weave pattern, and sewing needle size are taken into account
as the input parameters and NPF as the output parameter. According to these parameters, 140 samples of data
were resulted. Each sample was tested five times. From these 140 data (input-output data pairs), 112 were used
for training the ANN and MLR models and 28 samples were used to test the performance of ANN and MLR.
Also, the NPF was measured on the Instron tensile tester to simulate sewing process.

Findings – The results indicated that the NPF in denim fabrics can be well predicted in terms of
sewing parameters by using ANN and MLR models, in which the ANN model exhibits greater
performance than MLR (RANN ¼ 0.989 . RMLR ¼ 0.901).

Research limitations/implications – The NPF measurement method is limited at low speed.

Originality/value – Using the ANN model for forecasting NPF in denim fabrics can help the
garment manufactures to produce high-quality denim products and improve the sewing process
through reducing seam damage. The NPF could be also measured in the cycle loading conditions
similar to sewing machine process by using a special designed tools mounted on the Instron tensile
tester.
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1. Introduction
Nowadays, the role of garment industry in economic activities and human life is
considerable (Guo et al., 2011). Among woven fabrics which are used in garment
industry, the denim fabrics are widely used as a main part of the garment fashion.
Denim apparel is promoted by many consumers around the world; in particular, the
success of these fabrics usage is because of its compatibility with every society and
culture (Card et al., 2006). The high quality of garments not only does depend on fabric
quality, sewing threads and sewing machine parameters, but also depends on fabric
sewability (Behera and Chand, 1997). The sewability of fabrics and its importance has
been considered in the process of garment manufacturing. The sewability is defined as
the ability of the material to be sewn efficiently and to provide a suitable performance
for its end use (Stylios et al., 1994). The study of sewability can help better
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comprehending of the interactions between one or more plies of fabric which are sewn
with sewing thread (Zeto et al., 1996).

Needle penetration force (NPF) is an important factor influencing on the quality of
seams and fabric sewability. The NPF is created by the friction between the martial
and sewing needle (Ujević et al., 2008).

The researchers measured NPF to investigate the sewing damage in fabrics during
sewing process.

A high penetration force is one of the key reasons causing the sewing damage; on the
other hand, a fabric with high penetration force is more susceptible to damage. Sewing
damage has directly negative effects on quality of garment. Therefore, the quantitative
value of NPF could be used to determine the damage of sewn fabrics during sewing
process (Stylios and Zhu, 1998; Zeto et al., 1996; Gurarda and Meric, 2005).

The types of material, number of fabric layers, weave pattern, sewing needle size,
and shape of needle point have a profound effect on the sewing NPF (Stylios and Xu,
1995; Ujević et al., 2008).

The researches on NPF can be classified into three categories including the
development of an instrument to measure the NPF (Carvalho et al., 2009; Rocha et al.,
1996), the investigation of parameters that influence the NPF (Gurarda and Meric,
2007), and predicting the NPF based on theoretical and finite element methods (Lomov,
1998; Mallet and Du, 1999).

In particular, artificial neural network (ANN) and fuzzy logic models are other
techniques of modeling, which are used in textile industry. In recent years, ANN has
been successfully used in garment industry (Park et al., 1997; Hui and Ng, 2005;
Jaouadi et al., 2006).

Stylios and Sotomi (1995) have applied neuro-fuzzy system to model the control of
sewing machinery for complicated interactions with limp materials. At first, in order to
predict fabric sewability from fabric properties a neural network was applied. Then for
optimizing foot pressure and thread tension, the obtained sewability parameter was
combined with machine speed in a fuzzy logic system. It was found it could be possible to
optimize sewing machine settings under any sewing materials. Also, the foot and disc
forces of sewing machines were optimized using the ANN model and neuro-fuzzy logic.
The accuracy of the control system was verified by a good agreement between the target
and obtained control surfaces for the foot and disc forces (Stylios and Sotomi, 1996).

Park and Kang (1999) objectively evaluated the seam pucker with five shape
parameters by using three-dimensional image analysis and artificial intelligence.
Barrett et al. (1996) developed an on-line fabric classification method to improve stitch
formation and seam quality in sewing machine using a wavelet-based neural network
approach. Needle penetration and presser foot forces were measured during sewing
process and decomposed by using the wavelet transform. Prominent features were
extracted by the wavelet transform of the NPF from the input to an ANN that classifies
the type of fabric and number of sewn plies.

A new approach for forecasting seam pucker in garment manufacture was
examined using ANNs (Stylios and Moore, 1993). The fabric bending stiffness,
thickness, and weight were used as inputs to a neural network. The back-propagation
(BP) technique was found especially successful to predict the seam pucker.

Hui et al. (2007) used ANN with the BP algorithm for the prediction of fabric sewing
performance based on the fabric properties. The physical and mechanical properties of
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fabrics were considered as input units. The sewing performance was identified in
terms of seam pucker, sewing needle damage, fabric distortion, and fabric overfeeding.
Also, Hui and Ng (2009) designed the ANN to predict seam performance of commercial
woven fabrics based on seam puckering, seam flotation, and seam efficiency.

Midha et al. (2010) designed an ANN model to predict the strength loss in threads
during high speed industrial sewing. The different types of threads, thread linear
density, fabric area density, number of fabric layers, stitch density, and needle size
were used as input parameters. It was observed that the neural network system is able
to predict the tenacity loss of threads after sewing. The seam strength of notched
webbings for parachute assemblies was investigated using ANN and the Taguchi’s
design of experiments (Onal et al., 2009). The results showed that the preciseness of
ANN model is higher than Taguchi’s design.

Few researchers theoretically predicted NPF and considered fabric and sewing
parameters. However, there is no research work available predicting the NPF in denim
fabrics using ANN and multiple linear regression (MLR) models. Therefore, this paper
presents two models, ANN and MLR, in order to predict NPF and consequently sewing
damage in denim fabrics.

2. Descriptions of the models
2.1 Artificial neural networks
ANN (neural networks) is a powerful modeling technique enabling to present any
kinds of input-output relationship, and also to solve problems which are difficult for
conventional computers or human beings (Majumdar, 2011).

When an ANN is trained, a particular input leads to a specific target output.
A network can have several layers, each of which has a weight matrix W, a bias vector
b, and an output vector. The layers of a multi-layer network have different
performances. The network output is presented in an output layer. The rest of layers
are hidden layers. Among the various kinds of networks, feed-forward BP network is
widely used. BP trains multi-layer feed-forward networks with differentiable transfer
functions. There are various training algorithms for feed-forward networks including
Trainlm, Traingdm and so on. All these algorithms apply the gradient of the
performance function (PF) to identify how to set the weights to minimize performance.
Trainlm is often the fastest BP algorithm (MATLAB software, 2008).

PF allows a network’s behavior to be graded. The typical PF used for training
feed-forward networks is the mean squared errors of network (mse), mean squared
error regularization (msereg), and sum of squared error (sse) are the other PF. In ANN,
learning functions such as Learngd or Learngdm are used. Transfer functions calculate
a layer’s output from its net input. There are many forms of transfer functions from a
simple linear scaling to nonlinear functions (Figure 1) including Purelin, Logsig, and
Tansig, etc. Neural network training can be made more efficient if the preprocessing
steps perform on the network inputs and targets (MATLAB software, 2008).

2.2 Multiple linear regression
MLR models are built from a potentially large number of predictive terms. The number
of interaction terms augments exponentially with the number of predictor variables.
The purpose is to develop a model of the relationship between one dependent variable Y
and one or more independent variablesX. The model gives the part of the variability ofY
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taken in account or explained by the variation ofX (MATLAB software, 2008). The MLR
model has been used as predictive model in textile problems (Haghighat et al., 2012).

3. Materials and methods
3.1 Fabric sample and needle size
In order to predict the needle NPF, seven commercial samples of denim fabrics with
different weights and weave patterns, commonly used for clothing, were prepared
(Table I). It is known the needle size is one of the main factors influencing the NPF.
Thus, five needles with different sizes (80, 90 100, 110, 120 Nm) were selected.

3.2 Measurement of NPF
Measuring of NPF has been performed on an Instron 5566 tensile tester (Figure 2(b)). In
order to hold the fabric samples on the Instron tensile tester, a ring (Figure 2(a)) which
previously was designed and constructed used (Doustar et al., 2010). To prevent
vertical movement of fabric during needle piercing, the ring was modified in such a
way that two emery papers were stuck to its surfaces. The ring is mounted on the
bottom jaw of Instron tensile tester. The needle was attached to the upper jaw of
Instron by using a special designed needle bar (Figure 2(c)), so that the position of
needle penetration relative to the center of ring to be eccentric. It is noted that with
eccentric position of needle, it is possible to have different places on the fabric sample
during needle penetration by rotating the ring.

To simulate the motion of needle in sewing machine, the cyclic penetration was
performed five times for each fabric sample. The needle insertion speed and depth of
needle insertion into the fabric structure were 460 mm/min and 12 mm, respectively.

Besides to fabric type and needle size effects, the fabric layer effect is also
considered. As a consequence, according to the different fabric types, fabric layers and

Fabric code D1 D2 D3 D4 D5 D6 D7
Weight (g/m2) 225 (6.63)a 300 (8.84) 370 (10.90) 375 (11.05) 402 (11.85) 421 (12.41) 441 (13.00)
Weave pattern T2/1 T3/1 T2/1 T3/1 T3/1 T3/1 T3/1

Note: aThe values in parentheses are the fabric weight in terms of (Oz/yd2)

Table I.
Physical characteristics
of denim fabrics

Figure 1.
Graph of transfer function

a = n

a = purelin(n) a = logsig(n) a = tansig(n)

a = 
1 + exp (–n)

1
a = 

(1 + exp (–2n)) 
–1

2

a

n n

a a
+1

–1 –1 –1

+1 +1

0 0 0

(a) (b) (c)

Notes: (a) Purelin; (b) Logsig; (c) Tansig
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needle size (seven different fabrics, four various layers and five needle size), the
number of samples is 140. Each sample was tested five times; therefore, the total
number of examined cases was 720. Figure 3 shows a typical result of NPF versus time
obtained in this research on the Instron tensile tester.

The force that is considered as NPF is the maximum penetration force between five
cycles for each sample. Thus, the average of NPF values for five tested cases of sample
was calculated. Table II shows the experimental values of NPF in different conditions.

In order to observe the sewing damage as a result of needle penetration process,
some pictures are captured from fabric surface by using a proper digital lens (Dino
Capture) connecting to the PC.

3.3 ANN model
In order to normalize and scale the input and output values in neural network, before
training, the mapminmax preprocessing is used. It causes the input and output

Figure 3.
A typical NPF versus time

at five cycles loading

Figure 2.
Experimental set up to

measure NPF on Instron
tensile tester

(a) (b) (c)

Notes: (a) Ring; (b) Instron tensile tester together with special attachments; (c) needle bar
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No. NFL NS FW WP NPF

1 1 80 225 T2/1 2.9
2 90 3.7
3 100 4.4
4 110 5.0
5 120 6.0
6 80 300 T3/1 2.2
7 90 2.5
8 100 2.6
9 110 4.5

10 120 4.7
11 80 370 T3/1 3.0
12 90 3.5
13 100 4.7
14 110 6.6
15 120 7.2
16 80 402 T3/1 3.5
17 90 4.7
18 100 5.3
19 110 6.9
20 120 9.0
21 80 421 T3/1 4.3
22 90 5.4
23 100 5.5
24 110 7.2
25 120 9.2
26 80 441 T3/1 5.7
27 90 8.0
28 100 9.0
29 110 11.1
30 120 12.0
31 80 375 T2/1 4.7
32 90 6.6
33 100 6.6
34 110 7.4
35 120 9.1
36 2 80 225 T2/1 5.4
37 90 6.6
38 100 7.5
39 110 10.4
40 120 12.0
41 80 300 T3/1 3.5
42 90 5.0
43 100 5.3
44 110 7.3
45 120 8.0
46 80 370 T3/1 6.0
47 90 6.5
48 100 8.4
49 110 12.0
50 120 12.9

(continued )

Table II.
The measured
experimental values
of NPF in different
conditions
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No. NFL NS FW WP NPF

51 80 402 T3/1 7.1
52 90 9.2
53 100 10.3
54 110 14.9
55 120 15.1
56 80 421 T3/1 8.0
57 90 10.1
58 100 10.4
59 110 13.8
60 120 16.6
61 80 441 T3/1 11.6
62 90 15.3
63 100 15.6
64 110 20.3
65 120 21.8
66 80 375 T2/1 8.3
67 90 11.0
68 100 11.1
69 110 14.8
70 120 16.1
71 3 80 225 T2/1 7.6
72 90 10.1
73 100 12.2
74 110 15.2
75 120 17.5
76 80 300 T3/1 4.7
77 90 6.6
78 100 7.2
79 110 11.4
80 120 11.8
81 80 370 T3/1 7.6
82 90 10.3
83 100 12.4
84 110 17.0
85 120 18.8
86 80 402 T3/1 9.4
87 90 12.8
88 100 14.5
89 110 18.1
90 120 21.0
91 80 421 T3/1 11.6
92 90 15.1
93 100 15.2
94 110 21.0
95 120 21.7
96 80 441 T3/1 15.9
97 90 21.7
98 100 21.8
99 110 27.1

100 120 30.4

(continued ) Table II.
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values fall within a specified range eliminate the influence of different units of their
parameters, and remove any influence of quantitative effects on the training process
(MATLAB software, 2008). According to equation (1), the input and output values (vi)
are scaled in the range [-1, 1] by using the function mapminmax (Chattopadhyay and
Guha, 2004):

No. NFL NS FW WP NPF

101 80 375 T2/1 11.1
102 90 15.2
103 100 17.8
104 110 21.0
105 120 25.6
106 4 80 225 T2/1 9.8
107 90 13.4
108 100 15.8
109 110 20.0
110 120 22.6
111 80 300 T3/1 7.4
112 90 6.3
113 100 8.5
114 110 12.2
115 120 15.3
116 80 370 T3/1 10.4
117 90 12.4
118 100 13.4
119 110 20.0
120 120 21.0
121 80 402 T3/1 10.9
122 90 13.8
123 100 17.3
124 110 24.0
125 120 25.0
126 80 421 T3/1 13.0
127 90 17.5
128 100 18.0
129 110 24.0
130 120 26.9
131 80 441 T3/1 20.2
132 90 24.4
133 100 28.2
134 110 35.7
135 120 39.2
136 80 375 T2/1 14.9
137 90 19.2
138 100 20.6
139 110 26.0
140 120 29.8

Notes: NPF – needle penetration force (N); NS – needle size (Nm); FW – fabric weight (g/m2);
WP – weave patternTable II.
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xi ¼ 2
vi 2 vmin

vmax 2 vmin

� �
2 1 i ¼ 1; 2 . . . n ð1Þ

where xi is the scaled value, vmax and vmin are respective maximum and minimum
values of input and output.

For predicting the NPF, several neural network models with two and three layers
were planned. The designed networks have four input units and one unit output
(Figure 4).

Moreover, 12 ANNs (N1. . .N12) with different data sets, different transfer and PFs,
number of hidden layers, and number of neurons in hidden layers, were designed
(Table III). In all networks, Trainlm was used as learning function.

To model the ANN, first, the five-fold cross-validation technique was used. Hence,
the data set of 140 samples was randomly divided into five subsets. The subsets were
combined together and five sets of training and testing data were formed. Each time,
four subsets were used for training set and one subset for testing set (training set and
test set contain 112 and 28 samples, respectively), accordingly, each planned network
was trained and tested five times.

Figure 4.
Architecture

of a multilayer feed
forward network

No. of fabric layers

Needle size

Weave pattern

Fabric weight

bi bj
1

2

Ok
Wi

Wji

Wk

bk

Iq Li Lj

Hidden layersInput layer Output layer

NPF·
·
·
·
·

·
·
·
·

Transfer function

Code
Network
structure

Learning
function

Performance
function

No. of hidden
layers

Hidden
layer 1

Hidden
layer 2

Output
layer

N1 4-8-6-1 LearnGDM mse 2 Tansig Tansig Tansig
N2 4-8-6-1 LearnGDM msereg 2 Tansig Tansig Purelin
N3 4-8-6-1 LearnGDM sse 2 Tansig Tansig Tansig
N4 4-10-8-1 LearnGDM mse 2 Tansig Tansig Purelin
N5 4-8-1 LearnGDM mse 1 Tansig – Tansig
N6 4-8-1 LearnGD mse 1 Tansig – Purelin
N7 4-6-1 LearnGD mse 1 Tansig – Purelin
N8 4-8-6-1 LearnGDM mse 2 Tansig Purelin Purelin
N9 4-8-1 LearnGD mse 1 Tansig – Tansig
N10 4-8-6-1 LearnGD mse 2 Tansig Logsig Purelin
N11 4-8-6-1 LearnGD mse 2 Tansig Tansig Logsig
N12 4-6-1 LearnGD mse 1 Tansig – Logsig

Table III.
Different network

architectures
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Then, the training sets (112 samples) were used for training the designed neural
networks. Finally, after training the networks, it is essential to evaluate the stability
and the performance of achieved networks; thus the testing sets (28 samples) were
applied for testing the networks. In this study, the MATLAB (R2008b) software was
used to perform neural network and MLR modeling.

3.4 MLR model
In the present work, MLR model was presented to predict the NPF based on
independent variables of sewing parameters including fabric weight, number of fabric
layers, needle size and weave pattern.

For this purpose, the same five sets of data (training and testing sets) in ANN model
were used for the MLR algorithm. At first, the MLR models were developed by samples
of training sets. Then, the created algorithms were assessed by the testing data sets.

For instance, by using the first set of data, the equation (2) was derived with a MLR
algorithm:

Needle penetration force ¼ 226:17 þ 3:981*NFLþ 0:224*NS þ 0:055*FW
2 0:475*WP ð2Þ

where NFL: no. of number of fabric layers, NS: needle size, FW: fabric weight, and WP:
weave pattern.

4. Result and discussion
4.1 The performance of ANN and MLR models in predicting NPF
In this study, two different models of were developed to predict the NPF. The
capability of ANN model for forecasting the NPF was examined by designing several
architectures of ANN.

For each model, ANN and MLR models, the values R and MSE (equation (3))
between the experimental and predicted values of NPF were calculated. Moreover, to
verify the network model, PF/3 value was used. Since this factor is more sensitive to
the difference between experimental and predicted values; it shows more precise
results than correlation coefficient:

MSE ¼

Pn
i¼0ð pi 2 eiÞ

2

n
ð3Þ

where MSE is mean square error between experimental and predicted values, pi:
predicting value, ei: experimental value, and n: is the number of patterns.

In order to investigate the performance of ANN and MLR models for forecasting
NPF, the designed ANN and MLR models were evaluated using the testing data sets.
The achieved results of models are given in Tables IV-VI.

In Table IV, the values of R, PF/3, and MSE obtained by testing networks with five
testing data sets are separately depicted. Table V presents the average of these values,
which were obtained by training networks with five training data sets.

These results show that the efficiency of ANN for prediction NPF is high
(N1. . .N10), however some networks do not have great efficiency (N11, N12). Among
the trained networks, network N9 has partly the greatest performance on the training
and testing data sets.
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Testing
Code Data set R-value PF/3 MSE

N1 1 0.963 18.196 6.182
2 0.983 11.195 5.016
3 0.993 6.929 0.562
4 0.995 6.211 0.428
5 0.988 12.233 0.669
Average 0.984 10.953 2.571

N2 1 0.922 21.287 13.417
2 0.986 9.790 6.179
3 0.988 9.661 1.011
4 0.992 8.145 0.480
5 0.993 7.523 0.932
Average 0.976 11.281 4.404

N3 1 0.938 21.003 8.975
2 0.986 9.784 5.158
3 0.973 14.971 2.706
4 0.990 9.767 0.813
5 0.992 9.452 1.809
Average 0.976 12.995 3.892

N4 1 0.933 21.372 14.287
2 0.969 14.588 5.234
3 0.993 7.622 0.975
4 0.989 10.951 0.923
5 0.989 9.093 1.237
Average 0.975 12.725 4.531

N5 1 0.975 13.969 3.452
2 0.992 7.969 1.004
3 0.991 7.200 0.942
4 0.988 9.600 4.583
5 0.985 9.946 0.877
Average 0.986 9.737 2.171

N6 1 0.972 17.927 8.478
2 0.992 7.134 0.933
3 0.993 8.497 2.389
4 0.994 6.741 0.445
5 0.982 15.034 0.869
Average 0.986 11.066 2.623

N7 1 0.981 17.238 6.659
2 0.993 8.440 1.606
3 0.987 11.331 2.658
4 0.987 10.080 0.849
5 0.985 13.709 0.743
Average 0.986 12.160 2.503

N8 1 0.988 11.258 2.039
2 0.994 7.152 0.851
3 0.984 14.385 4.102
4 0.990 9.252 0.852
5 0.988 8.697 0.769
Average 0.989 10.149 1.722

N9 1 0.982 12.304 2.941

(continued )

Table IV.
Performance of ANN

model on testing data sets
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Generally, according to the results, it is clear that the performance of the ANN model is
better than MLR model. For example, the network N9 is compared with MLR model; it
is observed that the performance of N9 to predict the NPF is higher than the
performance of MLR model. The average of R-value in N9 is higher than the average of
R-value in MLR on testing data sets (0.989 . 0.901), and MSE value for N9 is less than
corresponding value for MLR model (1.720 , 10.594).

Testing
Code Data set R-value PF/3 MSE

2 0.992 8.001 1.116
3 0.993 8.198 2.985
4 0.986 11.366 0.902
5 0.991 10.210 0.658
Average 0.989 10.016 1.720

N10 1 0.923 22.846 10.996
2 0.993 8.485 0.881
3 0.976 13.614 2.104
4 0.994 6.624 0.362
5 0.969 14.433 1.410
Average 0.971 13.201 3.150

N11 1 0.512 55.046 69.947
2 0.703 50.105 74.092
3 0.371 63.518 117.252
4 0.267 63.777 133.170
5 0.597 63.439 176.873
Average 0.490 59.177 114.267

N12 1 0.786 43.972 45.978
2 0.660 51.669 75.312
3 0.599 57.770 116.157
4 0.381 64.368 133.170
5 0.685 58.531 126.873
Average 0.622 55.262 99.498Table IV.

Training
Code R-value PF/3 MSE

N1 0.981 13.039 2.176
N2 0.978 12.998 2.494
N3 0.974 14.319 2.918
N4 0.977 13.429 2.687
N5 0.986 11.241 1.437
N6 0.988 12.725 1.513
N7 0.986 13.347 1.508
N8 0.983 13.269 2.382
N9 0.987 11.567 1.601
N10 0.971 16.745 3.999
N11 0.475 66.036 127.002
N12 0.659 60.610 107.679

Table V.
Performance of
ANN model on training
data sets
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For example, the performance of network N9 to predict the NPF is high. The
average of R-values on training and testing data sets in N9 are 0.987 and 0.989,
respectively. In addition, the MSE values on training and testing data sets are 1.720
and 1.601, respectively. However, the performance of MLR model to predict the NPF
with average values of R and MSE (0.901 and 10.594) on testing data sets is not
acceptable.

In addition, the value of PF/3 shows that the preciseness of ANN in network N9 to
predict the NPF is 90 percent.

Training Testing
Data set R-value MSE R-value MSE

1 0.903 7.090 0.902 15.578
2 0.908 8.738 0.916 12.017
3 0.913 9.561 0.905 8.407
4 0.911 9.798 0.892 7.342
5 0.910 9.358 0.890 9.629
Average 0.909 8.909 0.901 10.594

Table VI.
Performance of MLR

model on training and
testing data sets

Figure 5.
The relationship between

experimental and
predicted (ANN model;
N9) values of NPF on

testing data set 1

R2 = 0.964

Figure 6.
The relationship between

experimental and
predicted (ANN model;
N9) values of NPF on

testing data set 2

R2 = 0.984

Modeling of NPF

373



Totally, the performance of ANN is better than MLR model. Figures 5-10 show the
relationship between experimental and predicted values on testing data sets in the
network N9, and on testing data set 2 in MLR, which confirm the neural networks are
suitable method for forecasting NPF.

Figure 7.
The relationship between
experimental and
predicted (ANN model;
N9) values of NPF on
testing data set 3

R2 = 0.986

Figure 8.
The relationship between
experimental and
predicted (ANN model;
N9) values of NPF on
testing data set 4

R2 = 0.972

Figure 9.
The relationship between
experimental and
predicted (ANN model;
N9) values of NPF on
testing data set 5

R2 = 0.982
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The architect of networks is important factor to have the best predicting values. By
comparing the planned networks (N1. . .N12), it is observed that the transfer function
is one of the important parameters in network architect. The results show that using
Logsig in output layer is not reasonable, because the performance of networks
dramatically reduces (N11, N12). The statistical analysis (One Way ANOVA) clears
that the PFs have no significant influence on the performance of neural networks (N1,
N2 and N3).

According to Tables IV and V, it is generally concluded that by increasing the
accuracy of network, the performance of network to predict NPF increases. For
instance, in networks which have an appropriate architect, the average values of R and
MSE on training data sets are satisfactory. As a result, the performance and stability of
model to predict NPF on testing data sets increases (i.e. the value of R increases and
MSE decreases).
Moreover, if the methodology of networks is not properly selected, as it could be found
in networks N11 and N12, the stability of model for predicting NPF will not be
acceptable.

The poor performance of MLR model in prediction NPF infers that the correlation
between sewing parameters and the NPF is partially nonlinear, because the MLR is
based on the first order equations. Thus, the results of this work showed that ANN
model with one or two hidden layers is proper for nonlinear relationships.

4.2 The effect of needle size on the NPF and predicting the sewing damage
As is well known and mentioned before, the NPF is an indication of sewing damage in
fabric and hence the sewing damage increases with NPF. Moreover, it was confirmed
that the sewing needle size and shape of needle point have a main influence on the NPF
and sewing damage (Stylios, 1986; Stylios and Xu, 1995).

The statistical analysis of data shows that at a specified number of fabric layers,
fabric weight and weave pattern, with increase of needle size the values of NPF
increases. For instance, the effect of needle size on NPF for fabrics with T3/1 weave
pattern was presented in Figure 11.

Generally, NPF increases when the diameter of needle becomes greater, especially,
in the heaviest fabric (D7: 441 g/m2). The same trend was obtained for fabrics with
T2/1 weave pattern (Table II).

Figure 10.
The relationship between

experimental and
predicted (MLR model)

values of NPF on testing
data set 2

R2 = 0.844
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The sewing damage was affected by needle size and it increases when the needle
becomes coarser.

This phenomenon is well demonstrated in Figure 12. It is clear that with a coarser
needle, the sewing damage over the fabric surface is increased. Therefore, by
predicting NPF using ANN and MLR models, it is possible to forecast the sewing
damage.

Nevertheless, in order to minimize the sewing damage caused by needle, according
to type and characteristics of fabric and sewing threads, the correct needle type and
size can be selected (Stylios and Zhu, 1998).

5. Conclusion
In this paper, two models including ANN and MLR were developed to predict the NPF
in denim fabrics. In ANN model, several architectures of feed-forward BP networks
were planned. In these models the fabric weight, number of fabric layers, weave
pattern and needle size are used as inputs and NPF as output values.

Figure 11.
The effect of needle size on
the NPF under sewing
with different fabric
weights (300-441 g/m2),
and various number of
fabric layers

(a) (b)

(c) (d)

Notes: (a) One layer; (b) two layers; (c) three layers; (d) four layers
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According to results, both of models could predict the NPF in denim fabrics. However,
it is found that the performance of ANN model was more precise than that of MLR
model, since the values R and MSE in ANN model in compared with MLR model were
higher and much lower, respectively. The result suggests that ANN has a greater great

Figure 12.
Pictures of needle

penetration through the
fabric surface

(a)

(b)

(c)

Notes: (a) Needle 80 Nm; (b) needle 100 Nm; (c) needle 120 Nm
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efficiency in prediction of penetration force. The calculated value of PF/3 exhibited that
the prediction accuracy of the developed ANN model was 90 percent. The results also
showed that the relationship between input parameters (fabric weight, number of
fabric layers, weave pattern, and sewing needle) and NPF is nonlinearly correlated.
This study also indicated that the NPF could be predicted with high accuracy based on
fabric properties and sewing parameters in denim fabrics. The use of ANN model for
forecasting NPF in denim fabrics can help the garment manufactories to produce high
quality denim products and improve the sewing process through reducing sewing
damage. Further research works are needed to extend this study for other fabric types
particularly elastic woven structures.
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