
The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the European Union. Neither the European
Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

The course is developed under Erasmus+ Program Key Action 2:
Cooperation for innovation and the exchange of good practices Knowledge Alliance

ICT IN TEXTILE AND CLOTHING HIGHER EDUCATION AND BUSINESS

Project Nr. 612248-EPP-1-2019-1-BG-EPPKA2-KA

Sofia University
“St. Kliment Ohridski
est. 1888

ICT-TEX course on
Digital skills

Topic 7: Introduction to Software Engineering

Sofia University
“St. Kliment Ohridski
est. 1888

2

7.3. Introduction to modeling and UML

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

These slides are part of the topic on
“Topic 7: Introduction to Software Engineering” of the
course on Digital skills in Textile and clothing industry.

Check also the other themes in this topic:

• 7.1. Software Engineering

• 7.2. Requirements Engineering

• 7.4. UML Diagrams

3ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Contents

3. Introduction to modeling and UML
• Models and modelling

• Object-oriented (OO) system modelling

• Unified Modelling Language (UML)

• UML diagrams

• Types of UML Diagrams

• The 4+1 views of the software architecture

• UML use case diagrams

• Elements of use case

• Associations (relationships) in use case diagrams

• Use case documenting – flow of events

4ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Models and modelling

• Model: (mathematical) presentation of structure and processes of a
given system (used for analysis and planning)

• Modeling: process of describing of the system by means of its model
(physical, conceptual, mathematical or based on imitation) and
simulation of system activities by means of applying the model on a
data set. Models represent real phenomenon that are difficult to
observe directly System modeling is the process of developing abstract
models of a system, with each model presenting a different view or
perspective of that system.

5Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

System modelling

• System modeling is the process of developing abstract models of a
system – existing or being under development, whereupon each model
represents a different perspective (so called view) of the system.

• System models describe the system structure, behavior and
functionality (external perspective of the system) and are used to
communicate them with customers:

– Static models – describe system structure, e.g. entity/relation data
models.

– Dynamic models – describe system behavior.

6Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Models of existing and planned system

• Models of an existing system are used for collecting and describing the
requirements. They model how the existing system functions and are
applied for revealing its strengths and weaknesses. They provide a base
for the requirements for a new version of the system.

• Models of a new system are used for design of the requirements in
order to explain them to other stakeholders in the system. They help
system engineers to select design proposals and document the system.

• Model engineering process – allows to generate a complete or partial
implementation of the system from a system model.

7Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Appliance of system models

• Describing the system in a correct way

• Formal – provide notations and techniques for unambiguous system
specification

• Consistent – different views should not describe things being in conflict each
other

• Easy to be explained to and understood by other people – as simple as possible
but not oversimplified

• Easy for updates and maintenance

• In a form suitable for transfer to other people

• Balanced between visual and textual description

Practical system models should be:

8Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Object-oriented (OO) system modelling

• OO system modelling represents a system as a group of objects which
co-operate, having a structure and constituting an organic, coherent set.

• A system is a collection of units connected and organized in order to
accomplish a specific goal.

9Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Objects
• An object is an atomic unit having:

– an identity

– a state (represented by the values of its properties) and

– a behavior (operations with possible parameters and, in many cases, returning a
result – realized as program methods to be executed)

• Class properties may be:

– Data attributes of specific type (such as String, Integer, Float, …)

– Structural relationships referencing other objects (like pointers to given objects)

• Information hiding – the internal representation, or state, of an object
is hidden from the outside

10Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Object and classes

• A class is a template to create objects
• A class can be viewed as a container of

objects with the same data and structural
attributes, operations, and semantics

• Each object is an instance of a specific class
• The object cannot be instance (exemplar)

of more that one class

• Encapsulation – bundling data and
methods that work on that data within one
unit

11

Object

XPTO 1

Object

XPTO 2

Object

XPTO n

Class

XPTO

instantiates

instantiates

instantiates

Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Object instance

12

An object instance

(i.e., exemplar) is a

specific object created

from a particular class.

Back to Contents

Attributes

Behavior

Object1 Object2 Object2

Instance of

Instance of

Instance of

Class

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Object-oriented analysis and design
• OO analysis is a process of defining the problem in terms of objects:

– real-world objects with which the system must interact, and

– candidate software objects used to explore various solution alternatives.

• You can define all of your real-world objects in terms of their classes,
attributes, and operations.

• OO design means defining the software solution of the problem by
components, interfaces, objects, classes, attributes, and operations that
will satisfy the requirements.

• You typically start with the candidate objects defined during analysis, and
add or change objects as needed to refine a design solution.

13Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Unified Modelling Language (UML)
UML is an OO modelling language for:

• specifying,

• visualizing,

• constructing, and

• documenting

the artifacts of software systems, as well as for business modeling and other non-
software systems. As a modeling language UML includes:

• Model elements — fundamental modeling concepts and semantics

• Notation — visual rendering of model elements

• Guidelines — idioms of usage

14Back to Contents

UML

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Goals of UML 1/2

• Provide users with a ready-to-use, expressive visual modeling
language to develop and exchange meaningful models.

• Furnish extensibility and specialization mechanisms to extend
the core concepts:
– build models using core concepts without using extension mechanisms

for most normal applications,

– add new concepts and notations for issues not covered by the core,

– choose among variant interpretations of existing concepts, when there is
no clear consensus,

– specialize the concepts, notations, and constraints for particular
application domains.

15Back to Contents

UML

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Goals of UML 2/2

• Support specifications that are independent of particular
programming languages and development processes.

• Provide a formal basis for understanding the process-
independent modeling language.

• Encourage the growth of the object tools market.

• Support higher-level development concepts such as
components, collaborations, frameworks and patterns.

• Integrate best practices – UML fuses the concepts of Booch,
OMT, and OOSE, in a single, common, and widely usable
modeling language.

16Back to Contents

UML

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

UML diagrams

• UML is the modern, general-purpose approach to modeling and
documenting software systems and business processes

• UML facilitates it by diagrams of various types

• UML diagrams represent the OO analysis and design solutions

• You can draw UML diagrams by hand or by using CASE (Computer Aided
Software Engineering) tools

• Using CASE tools requires some expertise, training, and commitment by
the project management

17Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Types of UML diagrams

18

U
M

L
D

ia
gr

am
s Behavior Diagrams

Activity Diagrams

State Machine Diagrams

Use Case Diagrams

Interaction Diagrams

Communication Diagrams

Interaction Overview Diagrams

Sequence Diagrams

Timing Diagrams

Structure Diagrams

Class Diagrams

Component Diagrams

Object Diagrams

Profile Diagrams

Package Diagrams

Deployment Diagrams

Composite Structure Diagrams

Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

The 4+1 views of the software architecture

Logical View Code View

Process
View

Deployment
View

19

UML USE CASES

Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

The 4+1 views of the software architecture

Scenarios
(UML Use Cases)

Logical View
(Object-oriented
Decomposition)

So-called conceptual view
- describes the object
model of the design

Development View
(Subsystem

Decomposition)

Describes the static
organization or structure

of the code in the
development environment

Physical View
(Mapping the

Software to Hardware)

Describes the deployment
of the software on the

hardware

Process View
(Process

Decomposition)

Describes the aspects of
competitiveness and

synchronization

20Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

UML use case diagrams

• UML use case diagrams provide overview of usage requirements for a
system.

• For actual system or software engineering use case diagrams describe
actual system/software requirements

• Useful also for simple presentations to management and/or project
stakeholders

21Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

• A use case diagram shows
user's interaction with the
system

• The use case diagrams are
used mainly in specification
and analysis of requirements

22Back to Contents

Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

Elements of use case
Actors - a person, organization, or external system that plays a role in one or more interactions
with your system

Use cases - describe a sequence of actions that provide something of measurable value to an
actor

Associations - exist whenever an actor is involved with an interaction described by a use case

Other relations – include, extend, generalize and depend

System boundary boxes (optional) - rectangles around the use cases to indicates the scope of
your system

Packages (optional) - UML constructs that enable you to organize model elements (such as use
cases) into groups

23Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

24ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Actor

An actor instance is someone or something outside the
system that interacts with the system.

An actor class defines a set of actor instances, in which
each actor instance plays the same role in relation to
the system.

Defining Actors

To fully understand the system's purpose you must know who the system is for, or who
will use the system. Different user types are represented as actors.

An actor is anything that exchanges data with the system. An actor can be a user, external
hardware, or another system

Back to Contents

Sofia University
“St. Kliment Ohridski
est. 1888

How to find actors
Who will supply/use/remove information?

Who will use this functionality?

Who is interested in any requirement?

Where in the organization is the system used?

Who will support/maintain the system?

What are the system’s external resources?

What other systems will need to interact with this one?

25Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Defining use cases

How to find use cases

• What are the system tasks for each actor you have identified?

• Does the actor need to be informed about certain occurrences in the system?

• What information must be modified or created in the system?

• Does the system supply the business with the correct behavior?

• What use cases will support and maintain the system?

26

Use Case

A use case instance (scenario) is a sequence of
actions a system performs that yields an observable
result of value for one or more particular actors or
other stakeholders of the system.
A use case (class) defines a set of use-case instances.

Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

27Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Associations (relationships) in use case diagrams

• Associations between actors and/or use cases are indicated in use case
diagrams by solid lines.

• An association exists whenever an actor is involved with an interaction
described by a use case.

• Associations are modeled as lines connecting use cases and actors to
one another

• The arrowhead is often used to indicate the direction of the initial
invocation of the relationship (but not the direction of information
exchange)

Sofia University
“St. Kliment Ohridski
est. 1888

28Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

A sample use case diagram

An ATM example - the system functionality is defined by different use cases,
each of which represents a specific flow of events, defines what happens in the
system when the use case is performed, and has a task of its own to perform.

Sofia University
“St. Kliment Ohridski
est. 1888

Use case documenting – flow of events
The Flow of Events of a use case contains the most important information derived from use-case modeling

work. Its contents

• Describe how the use case starts and ends

• Describe what data is exchanged between the actor and the use case

• Do not describe the details of the user interface, unless it is necessary to understand the behavior of the
system

• Describe the flow of events, not only the functionality. To enforce this, start every action with "When the
actor ... "

• Describe only the events that belong to the use case, and not what happens in other use cases or outside of
the system

• Avoid vague terminology such as "for example", "etc. " and "information"

• Detail the flow of events - all "whats" should be answered.

29Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

Concrete and abstract use cases
• A concrete use case is initiated by an actor and

constitutes a complete flow of events (instance of
the use case performs the entire operation called
for by the actor).

• An abstract use case (written in italics) is never
instantiated in itself. Abstract use cases are
included in, extended into, or generalizing other
use cases. When a concrete use case is initiated,
an instance of the use case is created. This
instance also exhibits the behavior specified by its
associated abstract use cases. Thus, no separate
instances are created from abstract use cases.

30Back to Contents

Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

31Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

<<Include>> relationship
An include-relationship is a directed relationship from a base use
case to an inclusion use case, specifying how the behavior defined
for the inclusion use case is non-optionally, explicitly inserted into
the behavior defined for the base use case.

«include»

Executing a use-case instance

following the description of a base

use case including its inclusion.

Including use case

Included use case

Use-Case Instance Base Use Case

Sofia University
“St. Kliment Ohridski
est. 1888

32Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

More about <<Include>> relationship
• Including use case includes the

“addition” and owns the include
relationship.

• Addition is use case that is to be
included.

• The including use case may only depend
on the result (value) of the included use
case.

• This value is obtained as a result of the
execution of the included use case. Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

33Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

An extend-relationship goes from an extension use case to a base use
case, specifying how the behavior defined for the extension use case can
be inserted into the behavior of the base use case. It is implicitly inserted
in the sense that the extension is not shown in the base use case.

«extend»

Execution of a use-
case instance

follows a base use
case and its
extension.

<<Extend>> relationship

Including use case

Extending Use Case

Use-Case Instance Base Use Case

Extension Point

Extension Use Case

Sofia University
“St. Kliment Ohridski
est. 1888

34Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

• This relationship specifies that the behavior of a use case may be extended by the
behavior of another (supplementary) use case.

• The extended use case is defined independently of the extending use case and is
meaningful independently of the extending use case.

• On the other hand, the extending use case typically defines behavior that may not
necessarily be meaningful by itself. Instead, the extending use case defines a set of
modular behavior increments that augment an execution of the extended use case
under specific conditions.

Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

More about <<Extend>> relationship

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

Extension points

• Extension points (since UML 2.0) show the actual logic
necessary for one use case to extend another.

• An extension point identifies the point in the base use case
where the behavior of an extension use case can be inserted.

• The extension point is specified for a base use case and is
referenced by an extend relationship between the base use
case and the extension use case.

35Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Sofia University
“St. Kliment Ohridski
est. 1888

36Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Use case generalization
A use-case-generalization is a taxonomic relationship from a
child use case to a more general, parent use case, specifying
how a child can specialize all behavior and characteristics
described for the parent.

Use case generalization

Execution: the use-case
instance follows the

parent use case, with
behavior inserted or

modified as described in
the child use case

Generalized Use Case

Use Case Instance

Child Use-Case

Parent Use Case

Generalizing Use Case

Sofia University
“St. Kliment Ohridski
est. 1888

37Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

More about generalization

General Use Case References the general classifier in the Generalization
relationship.

Specific Use Case References the specializing classifier in the
Generalization relationship.

Substitutable Indicates whether the specific classifier can be used
wherever the general classifier can be used. If true,
the execution traces of the specific classifier will be a
superset of the execution traces of the general
classifier.

Sofia University
“St. Kliment Ohridski
est. 1888

38Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Example of use case generalization
The actor Order Registry Clerk can
instantiate the general use case Place
Order. Place Order can also be
specialized by the use cases Phone
Order or Internet Order.

The child may modify behavior
segments inherited from the parent.
The structure of the parent use case is
preserved by the child. Both use-case-
generalization and include can be used
to reuse behavior among use cases. Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

39Back to Contents ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

Use case model of an Order Management System

Use case model

The use-case model is a model that
describes a system's requirements
in terms of use cases.

Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

concrete use cases

abstract use cases

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

System boundary boxes

• System boundary box (optional) - a
rectangle around the use cases to indicates
the scope of your sub-system

• Anything within the box represents
functionality that is in scope and anything
outside the box is not

• Rarely used – i.e., to identify which use
cases will be delivered in each major
release of a system

40Back to Contents

Used Visual Paradigm Community Edition tool:

https://www.visual-paradigm.com/ last accessed 04.01.2021

ICT-TEX course on Digital skills7.3. Introduction to modeling and UML

https://www.visual-paradigm.com/

Sofia University
“St. Kliment Ohridski
est. 1888

References

• Sommerville, I. Software Engineering. 10th edition, Published by Pearson Education,
ISBN: 978-1-292-09613-1 (2016)

• Pressman, R., Maxim, B. Software Engineering: A Practitioner's Approach. 9th
edition, Published by McGraw-Hill Education, ISBN: 9781260548006, (2019)

• Page-Jones, M., Constantine, L. Fundamentals of object-oriented design in UML,
Addison-Wesley, ISBN: 0-201-69946-X (2000)

41ICT-TEX course on Digital skills7.3. Introduction to modeling and UML Back to Contents

Author:
Professor Boyan Bontchev
Sofia University “St. Kliment Ohridski”

Email: bbontchev@fmi.uni-sofia.bg

ResearchGate: https://www.researchgate.net/profile/Boyan-Bontchev

Scopus: https://www.scopus.com/authid/detail.uri?authorId=6506653436

Assistant professor Yavor Dankov
Sofia University “St. Kliment Ohridski”

Email: yavor.dankov@fmi.uni-sofia.bg

ResearchGate: https://www.researchgate.net/profile/Yavor-Dankov

Scopus: https://www.scopus.com/authid/detail.uri?authorId=57202891597

CONTACTS

These slides and the materials included in these slides (including references) are for educational purposes only. The use of slides should be done with correct citation and only
for educational purposes.
The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the European Union. Neither the European
Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

Coordinator:
Technical University of Sofia

Project coordinator:
assoc. prof. Angel Terziev, PhD
aterziev@tu-sofia.bg

Web-site: ICT-TEX.eu

mailto:bbontchev@fmi.uni-sofia.bg
https://www.researchgate.net/profile/Boyan-Bontchev
https://www.scopus.com/authid/detail.uri?authorId=6506653436
mailto:yavor.dankov@fmi.uni-sofia.bg
https://www.researchgate.net/profile/Yavor-Dankov
https://www.scopus.com/authid/detail.uri?authorId=57202891597
https://ict-tex.eu/

